
CFINSIGHT:
A Comprehensive Metric for CFI Policies

Tommaso Frassetto, Patrick Jauernig, David Koisser, and Ahmad-Reza Sadeghi
Technical University of Darmstadt

tommaso.frassetto@trust.tu-darmstadt.de, patrick.jauernig@trust.tu-darmstadt.de,
david.koisser@trust.tu-darmstadt.de, ahmad.sadeghi@trust.tu-darmstadt.de

Abstract—Software vulnerabilities are one of the major threats
to computer security and have caused substantial damage over
the past decades. Consequently, numerous techniques have been
proposed to mitigate the risk of exploitation of vulnerable pro-
grams. One of the most relevant defense mechanisms is Control-
Flow Integrity (CFI): multiple variants have been introduced
and extensively discussed in academia as well as deployed in the
industry. However, it is hard to compare the security guarantees
of these implementations as existing metrics (such as AIR) do not
consider the different usefulness to the attacker of different basic
blocks, which are the fundamental components that constitute
the code of any application.

This paper introduces BLOCKINSULATION and CFGINSU-
LATION, novel metrics designed to overcome this limitation by
modeling the usefulness of basic blocks for an attacker trying to
traverse the program’s control-flow graph. Moreover, we propose
a new CFI policy generator, named NumCFI, which is orthogonal
to existing policy generators and prevents the attacker from
taking shortcuts from vulnerable code to a system call instruction.
We evaluate NumCFI, as well as a number of other CFI policy
generators, using BLOCKINSULATION, CFGINSULATION, and
existing metrics. Lastly, we describe L+TCFI, our implementation
that combines NumCFI and an existing label-based policy, with
a performance overhead of just 1.27%.

I. INTRODUCTION

Since their invention, computer systems have become re-
sponsible for increasingly complex tasks. As a result, computer
programs have become increasingly complex as well. Due
to this complexity and the presence of legacy code, most
modern software projects are plagued by several security
vulnerabilities. A number of approaches have been suggested
to find these security vulnerabilities, including software testing,
fuzzing, and formal methods. However, proving that software
is free from vulnerabilities is only feasible for small programs.
Thus, researchers have proposed a number of strategies that
aim to mitigate vulnerabilities in running programs.

These run-time mitigations are usually based on one of
two principles: either preventing the adversary from learning
some information that is necessary to perform an attack, or
inserting additional checks in the program to make an attack
impossible. An example of the former, which is currently

deployed in most operating systems, is Address Space Layout
Randomization (ASLR) [37], which randomizes the memory
layout of a program and hides it from the adversary. An
example of the latter, also widely adopted in the software
industry, is Control-Flow Integrity (CFI) [2], which ensures
that a part of a program can only transfer control to a different
part if this transfer was intended by the programmer.

This paper is focused on CFI, whose main idea is to add
checks to all indirect control flow transfer instructions, i.e.,
machine instructions that transfer control to a dynamically-
computed address. CFI allows each of these instructions to
only transfer control to a subset of targets, according to a
control-flow graph (CFG). Since its introduction by Abadi et
al. in 2005 [2], CFI has been the focus of a large corpus
of research works. There are many variants with different
granularity and based on either hardware or software. Given
the number of different approaches, it is important to be
able to compare them in terms of both performance overhead
and effectiveness against memory-corruption attacks. While
there is a widely accepted metric to compare their perfor-
mance overhead, i.e., the run time overhead of the execution
of a standard benchmark, there is no single metric that is
widely recognized by the community to compare the security
protection provided by different approaches. The best-known
metric is Average Indirect-target Reduction (AIR) [55], which
is defined as the average reduction of allowed targets across
every indirect control flow transfer instruction (the higher the
better). However, AIR is not a good metric to compare different
policies [51], as most CFI papers that rely on AIR report
similar values greater than 99% [6]. Yet, even implementations
with very high AIR are still vulnerable [13], [21]: in other
words, missing even less than 1 percentage point in AIR is
enough to perform attacks. Hence, AIR is not a good instru-
ment to distinguish between and compare CFI approaches.
After AIR, a number of other metrics, including AIA [18],
QuantitativeSecurity [6], and CTR [34], have been proposed,
as we discuss in Section IX. However, they all share a major
shortcoming: they do not consider the usefulness of different
basic blocks to construct an attack, instead only considering
their quantity. Hence, there is a need for a new approach that
leverages not only local information regarding single basic
blocks, but also their position and connectivity in the full CFG.
In this paper, we introduce CFINSIGHT, a new CFI evaluation
methodology and framework that achieves that.

CFINSIGHT. A very important building block for a run-
time attack is the possibility to invoke a system call with
controlled parameters. This is useful, e.g., to start a new

Network and Distributed Systems Security (NDSS) Symposium 2022
24-28 April 2022, San Diego, CA, USA
ISBN 1-891562-74-6
https://dx.doi.org/10.14722/ndss.2022.23165
www.ndss-symposium.org

malicious process or to change the memory protection settings.
Performing a system call is also the only way to exfiltrate
files or further compromise the machine, and is used in real-
world exploits [10]. Hence, our CFI evaluation framework
CFINSIGHT is based on the assumption that the attacker found
a vulnerable basic block and wants to perform a controlled
system call. Usually, many blocks containing system call
instructions exist in the program: some are unreachable from
the vulnerable block, while others can be reached using a
number of different paths through the CFG. We construct a
novel metric, CFGINSULATION, which considers the number
and length of these paths from a basic block to a system call,
and quantifies how easy it is for an attacker to build an exploit.
We model a number of CFI policy generators: a theoretical
perfect one, generators based on matching function types or
number of arguments, and a generator that allows transfers to
any valid function. We show that we can apply CFINSIGHT
to the generated policies and compute their CFGINSULATION
to compare them, showing how CFGINSULATION allows to
distinguish between policies with very similar AIR.

NumCFI. Moreover, we leverage the data generated by
CFINSIGHT to define and evaluate a new CFI policy generator,
dubbed NumCFI. NumCFI assigns each basic block a tag,
which is the length of the shortest path from the block to a
system call instruction, and it enforces the property that a block
with tag t can only call blocks with tag ≥ t−1. In other words,
any attack that starts in a basic block and requires a system
call needs to go through as many basic blocks as the shortest
legal path from the starting node to a system call instruction;
the attacker cannot “take shortcuts,” but has to go through
the specified number of basic blocks instead. We show that
NumCFI has a comparable or better CFGINSULATION than a
type-based policy generator, and that combining them leads to
significant improvements over either one. We demonstrate that
this combination is practical with a prototype implementation,
which we call L+TCFI, and show that it has a very low run-
time overhead (1.27% on benchmarks of the SPEC CPU2017
suite).

Contributions. In this paper we make the following contri-
butions:

• We describe, design, and implement a novel CFI evalua-
tion framework, CFINSIGHT, based on measuring expres-
sive properties of the CFGs of real programs, instead of
simply counting reachable basic blocks. We plan to open
source CFINSIGHT so it can be useful to the community.

• We apply CFINSIGHT to better compare the relative secu-
rity characteristics of multiple state-of-the-art CFI policy
generators, using our new CFI metric, CFGINSULATION.
We compare CFGINSULATION with four existing CFI
metrics.

• We leverage the knowledge generated by CFINSIGHT to
define a new CFI policy generator, NumCFI, and show
that it significantly improves the security guarantees of
other widely used CFI policy generators.

• We design a generic CFI implementation, L+TCFI, which
can be used to enforce a combination of NumCFI with
a classic label-based CFI, and we show that it has a
very low run-time overhead (1.27% on benchmarks of
the SPEC CPU2017 suite).

The rest of the paper is organized as follows: Section II
introduces a number of topics that are required to understand
the rest of the paper; Section III describes our approach and our
metrics; Section IV describes our analyzer, which computes
these metrics; Section V applies the analyzer to a number
of existing CFI policy generators and discusses the resulting
metrics; Section VI describes NumCFI; Section VII adds
NumCFI to our analysis; Section VIII describes and evaluates
our CFI implementation L+TCFI; Section IX discusses related
works and Section X concludes the paper.

II. BACKGROUND

This section introduces control-flow graphs, run-time at-
tacks and control-flow integrity.

A. Control-Flow Graphs

A control-flow graph (CFG) is a directed graph repre-
senting the control flow of a program. It consists of nodes,
which represent the basic blocks in the program, and edges
representing legal transitions from one basic block to another.
A basic block is a contiguous sequence of instructions that does
not have any internal branch: branch instructions can only be
the last instruction of a basic block, and instructions targeted
by a branch can only be the first instruction of a basic block.
CFGs (and the basic blocks they contain) are a popular abstrac-
tion used to analyze computer programs. However, generating
CFGs is not trivial. They can be generated either statically or
dynamically. Static generation leverages compiler passes (or
an equivalent for binaries) to decide based on the observed
instruction whether a new basic block is formed or if there is a
transition from one basic block to another. These transitions are
caused by branches. Determining all the possible destinations
of a branch is hard in practice, as a common construct
used in programs are indirect jumps. Indirect jumps get their
target from a register, hence, this target cannot be resolved
statically in the general case, but only approximated. While
modern techniques like symbolic execution can help to solve
this problem, the generated CFG is still an approximation in
practice. In contrast, dynamic approaches monitor the behavior
of the program at run time. Hardware features like Intel PT
or debugging functionality allow to extract the actual targets
of indirect jumps. Nonetheless, this approach also cannot fully
solve the problem, as dynamic approaches can only monitor
the control flow for taken branches. Since the information
observed depends on the program’s input, a large set of inputs
might be needed to generate a close-to-perfect CFG, which can
be achieved through the use of automated testing (fuzzing) or
a test suite.

B. Run-time Attacks

Run-time attacks have been a persistent threat for modern
computing platforms for more than three decades. These
attacks exploit vulnerabilities in software to achieve arbitrary
code execution. Memory corruption attacks have a long-
standing history. The very first attacks exploited buffer over-
flows in memory to inject new code into the data section and
execute it later, which effectively added a new node to the
CFG. However, these attacks were still primitive, and easy to
mitigate. By introducing a write-xor-execute (W⊕X) policy,
attackers could no longer inject executable data, stopping

2

code injection attacks altogether. This mitigation has been
deployed broadly, and is most prominently known as Data
Execution Prevention (DEP). Although this mitigation raised
the bar, attackers found new strategies to bypass these defenses
using more sophisticated attacks that do not add nodes to the
CFG, but add new paths between existing nodes, hence called
code-reuse attacks. Code-reuse attacks can be categorized
into full-function reuse attacks (e.g., return-to-libc [49]) and
return-oriented programming (ROP) [45], [9]. ROP uses small
sequences of instructions to form gadgets, which can be used
as building blocks to mount a more complex attack or achieve
Turing-complete computation. While simple defenses like
Address-Space Layout Randomization (ASLR) were deployed
in real systems, ROP remains challenging to prevent, especially
since code-reuse attacks can be combined with information
leakage (e.g., the JIT-ROP attack [48]). These enhanced attacks
spawned advanced defenses both in hardware and software.
Prominent examples of defenses are Control-Flow Integrity
(CFI) [2], [12], [19], [3], Code-Pointer Integrity (CPI) [28],
or sophisticated randomization techniques [11], [48]. Some
defenses are already deployed in products, e.g., Microsoft’s
Control-Flow Guard (CFGuard), Clang’s CFI [30] which is
used in Google Chrome, Intel’s Control-flow Enforcement
Technology (CET) [25] and ARM’s Pointer Authentication
(PAC) [41]. Due to the progressive adoption of some of these
defenses, a more advanced type of attack has been introduced
in the academic world. In a Data-oriented Programming (DOP)
attack [24], [26], non-control data is manipulated to reuse
valid paths under CFI to achieve Turing-complete computation.
While schemes like Data-Flow Integrity [8], [50] solve this
theoretically, they come at a significant performance and
hardware overhead. As a result, solving this problem remains
challenging in practice.

C. Control-Flow Integrity

Control-Flow Integrity relies on the fact that most functions
in a program only call a very limited subset of the other
functions. Given a CFG of a program, a CFI implementation
instruments the code such that only these transfers are allowed,
and any attempt to deviate from the CFG is detected. Only
function calls that compute their target at run time, i.e.,
indirect function calls, are potentially vulnerable and need to
be instrumented; direct function calls have a hard-coded target
that cannot be changed at run time. A context-insensitive CFI
policy specifies, for every indirect function call site, which
other functions can legitimately be called from that site. A
context-sensitive CFI policy considers not only the identity of
the call site and the callee, but also other criteria, like the
value of a variable or the top of the call stack, in order to
decide whether an indirect call is legal. Moreover, the call to
a function (forward edge) is not the only one that needs to be
protected, the return (backward edge) needs it too [7], e.g., in
the form of a shadow stack [5], a data structure keeping secure
copies of return addresses.

Deploying CFI poses a number of challenges. One such
challenge is overapproximation of the allowed control flow
transfers, which is mostly introduced in the name of perfor-
mance. A precise run-time instrumentation needs to check if
a specific target is allowed for the specific caller, which can
be relatively slow. Thus, most CFI policy generators introduce
overapproximations in order to streamline the checks and make

C

int (*p)(int);
p(42);

A

D

J

F

E M

S

mprotect();

G H

K

N

0

3

2

1

Complex Function
(safe)

Fig. 1. A CFG for a simple program with a corruptible pointer.

them faster. A common method to simplify CFI checks is
to assign a single numeric label to every indirect caller and
callee and check that the label of the caller matches that of
the callee. This effectively splits the nodes into equivalence
classes, one for each label, and allows the run-time check to
be a simple (and fast) integer comparison. As an example, a
CFI implementation can label functions according to the return
type and type of the parameters [38]. However, it introduces
overapproximation because unrelated nodes need to have the
same label in order for the scheme to work, i.e., it is not
possible to distinguish between targets in the same equivalence
class. This overapproximation has been shown to be sufficient
to attack protected programs [13], [17]. In practice, most
of the deployed CFI implementations use either type-based
policies [30] or simple heuristics, like checking whether the
callee address is the beginning of a function [32].

A recent trend is to add hardware support for CFI [25],
[29], improving performance and providing better integrity
protection for the CFI mechanism itself.

III. CFINSIGHT

We begin our description of CFINSIGHT by looking at
the sample CFG in Figure 1. In this program, basic block
C contains a function pointer p which can be corrupted by
the adversary. The adversary can leverage this vulnerability to
launch a code-reuse attack, and wants to reach block S, which
contains an invocation to the system call mprotect. If the
adversary can reach this block and control the parameters to
the system call, it is trivial to disable memory protection and
then perform a classic code injection attack. If the program
is not protected by CFI, the adversary can simply redirect the
control flow to block S using edge 0 and then perform the
rest of the attack. However, if the program is protected by CFI,
only CFG edges allowed by the CFI policy can be followed;

3

as a result, the attacker is limited to these allowed edges. In
the case of a perfect CFI policy (which only allows black
solid edges from Figure 1), the only path to S goes through a
complex function, which we assume to be implemented with
secure programming techniques: as a result, it is likely that the
attacker can only invoke the system call using safe parameters
and, hence, cannot launch the attack.

Real-world CFI implementations, however, are not perfect,
as we mention in Section II-C, and often use overapproximated
policies, i.e., they allow edges that should be forbidden.
The impact of this overapproximation on the security of the
program depends on which illegal edge is incorrectly allowed.
As an example, if edge 1 is allowed, the adversary gains no
advantage, since the only path to S still goes through the safe
function. If one of the edges 2 and 3 is included, the attacker
can instead jump to J or G and follow more nodes until the
control flow reaches S.

From the perspective of existing metrics, like AIR [55],
AIA [18], or CTR [34], a policy that includes edge 1 is
equivalent to one that includes edge 2 , or one that includes
3 , as they allow the same number of edges starting from

C. However, they are not equivalent in practice. If only 1
is allowed, the attacker has no advantage over a perfect CFI,
since there is no additional path to S. If only 2 is allowed,
the attacker has a substantial advantage: the attacker can jump
to J and then follow the flow to M and S. Lastly, if only 3 is
allowed, the attacker still has an advantage, but smaller than the
previous case: The attacker must jump to G and try to follow
the chain all the way to S. In order for this to be successful,
the adversary needs to ensure that the desired branch to K is
taken in G, instead of the branch to H (similarly in K, with the
branch to M). Which branch is taken depends on a condition,
which could be out of the attacker’s control.

The purpose of CFINSIGHT is to compare CFI policies
considering their graph structure and connectivity. We focus
on context-insensitive CFI policies, since most CFI policies
deployed in practice fall in this category [2], [30], [25];
however, our approach can also be applied to context-sensitive
CFI policies, as we discuss in Section IV-D. For each indirect
function call, we measure the quantity and length of possible
paths that lead to a system call instruction.

In the following, we first describe our threat model, then
we explain how our metric is defined and how we compute it.

A. Threat Model and Assumptions

With CFINSIGHT we aim to model how most run-time
attacks start in the real world. Thus, we make the following
assumptions about the victim program and the capabilities of
the adversary:

A0 The adversary wants to attack a vulnerable program.
More concretely, the goal of the adversary is to invoke a
system call with controlled parameters, e.g., to start a new
malicious process or to change the memory protection
settings. Performing a system call is the only way to
exfiltrate files or further compromise the machine, and
is used in real-world exploits [10].

A1 The adversary has access to a vulnerability in the program
that allows arbitrary read operations to readable memory
and arbitrary write operations to writable memory.

A2 The adversary can leverage the arbitrary write primitive
to corrupt the memory such that an indirect call will be
redirected to an unintended target. As an example, this can
be done in the presence of a buffer overflow vulnerability.
The adversary can corrupt pointers and hijack the control
flow multiple times. If a CFI policy is in place, all of the
hijacked calls need to comply with the CFI policy.

A3 We assume W⊕X (see Section II-B) to be in place
and working, i.e., the adversary cannot overwrite the
application code or inject new code.

A4 We assume that a shadow stack implementation [5], or
equivalent, is deployed on the victim, hence, the attacker
cannot target the function returns. Protecting function re-
turns is a very different problem than protecting function
calls, and this paper is focused on the latter.

A5 We assume the adversary to be able to bypass any
randomization-based defense in use, e.g., ASLR; thus, we
do not consider them in our model.

A6 In principle, our approach can be applied to any operating
system. However, a number of low-level details differ
between them. Hence, we focus on Linux, in line with
related work [6], [7], [16], [17].

A7 We expect the victim program to be built using the current
best practices for Linux software, e.g., full RELRO [47],
which makes the Procedure Linkage Table (PLT) read-
only. Thus, the attacker cannot overwrite PLT entries.

B. Our Observations: Single-Node Metric

In CFINSIGHT, we aim to define quantifiable properties
of a graph that measure how easily an attacker can build a
successful attack. We begin by considering a given node in the
CFG that calls a vulnerable code pointer, and a specific system
call site the adversary needs to reach. To reach this goal, the
adversary needs to follow a number of CFG edges, which
need to be legal according to the current CFI policy. Let us
consider one such path. Each basic block on this path contains
machine instructions, which perform a number of operations,
and ends with a (possibly conditional) branch instruction. As
a result, traversing each basic block poses two challenges for
the adversary. First, if the branch is conditional, the adversary
needs to make sure the value of the branch condition is true if
the branch is to be taken, or false otherwise. Second, the code
in the basic block often writes data to memory or to a register;
this might overwrite some data the adversary prepared for the
attack, e.g., a parameter of the system call or the operand of
a branch condition. Our first observation follows:

O1 The more basic blocks an attack needs to traverse, the
harder the attack is.

However, there usually are multiple paths between a node
and a system call site. The attacker only needs one path that
supports an attack, and hence:

O2 The more paths are available for an attack, the higher the
likelihood that at least one of them is viable for the attack.

We leverage these observations to build our metric to
measure the effectiveness of CFI policies. As a first approxi-
mation, our metric is the ratio between the length of paths to
any system call, and the number of these paths. Our metric
is directly proportional to the length of the paths, due to

4

Observation O1, and inversely proportional to their number,
due to Observation O2; higher values of the metric indicate
that the attack is harder. However, this approximation needs to
be refined to be applicable in practice. First, there are multiple
paths of varying lengths starting in a given node and ending in
some system call site; since it is not computationally feasible
to examine all paths in a complex CFG, we consider instead
the lower bound of their lengths, i.e., the shortest path from the
node to any system call. Second, it is also infeasible to know
the exact number of paths from a given node to a system call;
a useful approximation is to consider the number of linearly
independent paths, which can be computed efficiently1.

The result is our metric that quantifies the difficulty of an
attack starting in a basic block b and reaching any system call
site. We call this metric BLOCKINSULATION(b) and we define
it as:

length of shortest path b → syscall

№ linearly independent paths b → syscall

If there is no path between b and any system call site,
we define BLOCKINSULATION(b) = ∞, since any attack is
impossible in this case.

C. Whole-Program Metric

In general, considering the whole distribution of values
of BLOCKINSULATION of all basic blocks gives the most
complete picture. However, it can also be useful to define
a single numeric metric to summarize the distribution of the
BLOCKINSULATION. Simply averaging the values is imprac-
tical, since the metric we defined can assume values from ≈ 0
to ∞. We instead decide to take the median value of the
distribution, which is often a finite value. If more than half of
the values are ∞ and the median is infinite, we instead take the
maximum finite value. A greater value of CFGINSULATION
indicates a program that is harder for an attacker to exploit.

CFINSIGHT leverages this new metric to compare the
security guarantees of different CFI policy generators.

IV. CFINSIGHT ANALYZER

In the previous section we introduced a metric to measure
the security guarantees of a CFI policy. In Figure 2 we show
the overall design of the analyzer we designed to compute this
metric. Each component is described in detail below.

A. CFG Generation

In order to compute our metric for a program we need
its CFG. As we explain in Section II-A, there are two main
approaches to generate a CFG: either through dynamic or
static analysis. Both approaches have different advantages and
limitations. While we consider the problem of enhancing CFG
generation techniques to be orthogonal to the scope of this
paper, the quality of our analysis does depend on the quality
of the CFG it uses. Hence, we leverage both approaches: we
trace a number of executions of the program on a set of inputs
and we also perform a static analysis of the program.

1The number of linearly independent paths in a graph, also known as Mc-
Cabe’s cyclomatic complexity [31], can be easily computed as |E|− |N |+2,
where |E| is the number of edges and |N | the number of nodes of the graph.

Dynamic
Analyzer

Static
Analyzer

Overapproximated CFG Generator

Unified CFG

Program BinaryInputs

Program Source Code

Function
Type

Analyzer

Gp GpGp Gp

Metric Evaluator

Type
Information

Fig. 2. Architecture of the CFINSIGHT analyzer.

insn0
insn1

insn0
insn1
insn2
insn3

jmp $reg

insn4
insn5
call fun

A

jmp $reg
C

D

insn2
insn3
insn4
insn5
call fun

B C

E

Fig. 3. Depending on the target of the jump instruction in block C (dashed
blue edge), two different pairs of basic blocks are generated: A+B or D+E.

We then combine the CFGs generated by these tools into a
single unified CFG for the program under analysis. Combining
multiple CFGs is not trivial, since different tools can split
a binary into different sets of basic blocks. As an example,
Figure 3 shows two different CFGs generated for the same
program. Assume that the jump instruction in block C can
legally jump to either insn2 or insn4, and that different tools
generate CFGs which only contain one of these edges each.
As a result of the different edges, in the CFG on the left the
code is split resulting in blocks A and B, while in the CFG
on the right the split results in blocks D and E.

While it is easy to determine whether an instruction termi-
nates a basic block (any branch instruction does), determining
where a basic block starts is more complex. By definition, a
basic block is a sequence of instructions that will be always
executed one after another. Since the tools often generate dif-

5

insn0

insn1

insn2

insn3

insn4

insn5

call fun

jmp $reg

insn0

insn1

insn2

insn3

insn4

insn5

call fun

jmp $reg

Fig. 4. Merging the graphs of Figure 3. Left: decomposition of the basic
blocks in single instructions. Right: recomposed basic blocks.

ferent sets of edges, and since the way instructions are grouped
into blocks depends on the known edges, different tools (and
concrete executions on different inputs) often produce different
basic block sets for the same instructions.

We address the problem by splitting all basic blocks into
instructions, building a list of all edges on the instruction level
(see left side of Figure 4). We then find the new basic block
boundaries based on all known edges for the program (right
side of Figure 4), thus generating a unified CFG.

In order to make the next steps more straightforward, we
add an additional node to the CFG, called target , which sym-
bolizes the attacker’s goal. In our attacker model (Assumption
A0), the adversary’s goal is to reach a system call, so we add
an edge from any block containing a system call to target .

B. Overapproximating the CFG

Once we obtain a unified CFG for a program, we need to
model the effect of the various CFI polices on the program. As
we mentioned in Section II-C, CFI policy generators introduce
overapproximations in order to simplify their construction or
improve their performance. For each generated CFI policy p,
we model its effect on a program’s CFG and generate a list
of edges that are not present in the CFG but are allowed by
the policy. We then add these edges to the original CFG and
generate Gp, i.e., the graph of all allowed control flow transfers
under policy p.

We model a number of CFI policy generators used in
widely deployed mitigation schemes, as well as the lack of
CFI:

SoFCFI a CFI policy generator that allows all functions to
be the target of any indirect function call, similarly to
what can be done with Intel CET [25];

TypeCFI a CFI policy generator that only allows indirect
function calls if the type signature of the callee matches
the type expected at the caller side, like RAP [38];

NumArgCFI a simplified variant of TypeCFI, which only
checks that the number of arguments of the callee matches

the number provided at the caller side. This policy gen-
erator is an idealized version of TypeArmor [53];

NoCFI the absence of CFI can be modeled by a policy that
allows each indirect call site to call any other basic block2

in the binary.

In order to compute SoFCFI, we only need the addresses of
the functions, which we can extract from the symbols in the
binary. For TypeCFI and NumArgCFI, we additionally need
type information. We extract the types of functions from the
debug symbols, while we leverage a custom compiler pass to
extract the expected function type at the indirect call sites.

C. Computing Our Metric

Once we generate the overapproximated graph Gp for a
policy p, we can use it to compute BLOCKINSULATION (see
Section III-B). The first step is to compute, for every indirect
call site b, the subgraph containing all paths to target (see
Section IV-A). Since we are only interested in nodes that have
a path to target , i.e., its ancestors, we focus only on them
for efficiency reasons. We compute the set of ancestors by
performing a depth-first search, starting in target , in a copy
of the graph where all edges are reversed. Afterwards, for
each indirect call site b, we perform a depth-first search, only
considering the ancestor nodes we found before. The nodes
found in this search compose the subgraph we wanted to build.
After this subgraph is known, our metric can be computed in
a straightforward manner.

The naive representation of the Gp graphs in memory
is challenging, since naively representing some CFI policies
requires a large number of edges. As an example, in NoCFI,
any indirect call site can transfer control to any basic block (see
Section IV-B), which produces |I|×|N | edges for a CFG with
|I| indirect call sites and |N | basic blocks. In order to produce
a more tractable representation of this graph, we introduce a
synthetic node, called any. We then create an edge i → any for
every i ∈ I , and an edge any → b for every b ∈ N . This leads
to a graph with the same connectivity, with only |I| + |N |
edges, which is a substantially lower number. However, if
not accounted for, this optimization would lead to different
result for our metric. Hence, while computing our metric in
the presence of synthetic nodes, we take this difference into
account, in order to compute the value the metric would have3

in the naive version of the graph.

D. Extensions and Discussion

The framework is built in a modular way and it can easily
be extended. For example, an analyst can add an additional
CFG generator, mark further blocks as the attacker’s target, or
model a new CFI policy generator. In particular, CFINSIGHT
can also be extended to consider a context-sensitive CFI policy
(see Section II-C). Representing a context-sensitive CFI policy

2In a variable-length instruction set like x86, in the absence of CFI, the
attacker can also jump in between instructions; we do not consider this in our
model, since the adversary does not need this possibility to very easily reach
a system call (without CFI).

3A synthetic node with i incoming and j outgoing edges represents the
fact that each of these i predecessors can reach any of the j successors. As
a result, these i + j edges in the graph actually represent i × j edges. We
then adjust the edge count by adding i× j − (i+ j) and the node count by
subtracting one.

6

requires having multiple nodes in the CFG for the same basic
block, one for each context. Our methods can then be applied
to this extended CFG.

In the presence of a multi-threaded application, CFIN-
SIGHT considers each thread separately. As a result, it does
not directly model an attack where two or more threads
are exploited at the same time and collaborate to perform a
system call. However, in this case, we focus on the thread that
performs the system call. Its control flow needs to reach a
system call site, starting from a legitimate block; as a result,
our analysis still applies.

V. CFINSIGHT: IMPLEMENTATION AND RESULTS

In this Section we describe our CFINSIGHT implementa-
tion and we present its results.

A. Analyzer: Implementation Notes

We implemented our prototype of the CFINSIGHT analyzer
as a number of Python scripts, totaling approximately 4 000
lines of code.

We compile all binaries with the Clang compiler (version
11.0.1), which we extend with a custom IR pass to pro-
duce a list of expected function types at indirect call sites
(see Section IV-B). For our static analysis we use the angr
framework [46], which can generate the CFG of a program
using static analysis and symbolic execution. For our dynamic
analysis we choose CFGgrind [43], a Valgrind-based tool that
dynamically records control flow transitions as they happen
during program execution. In angr, we generate both a fast and
an emulated CFG, while in CFGgrind we generate a separate
CFG for every input file; all of them are then combined into
a unified CFG, like we explain in Section IV-A. We extract
the function types for TypeCFI from DWARF debug symbols,
which encode the types of the functions (together with other
information) in the binary itself. We decode this data in our
DWARF parser, which is based on pyelftools [4]. We also
retrieve the detached debug symbols for the system libraries
from the Debian package manager, then we decode them with
our DWARF parser.

The most processing-intensive part of the analysis pipeline
is the evaluation of the metrics on an overapproximated graph.
Since this evaluation is mostly independent for each basic
block, we split the work between multiple threads (up to the
number of CPU cores available), while the main thread is
responsible for collecting the results.

B. Results

In this section, we report the results of our CFINSIGHT
framework on state-of-the-art CFI policy generators. In Sec-
tion VII, we compare these metrics with our novel CFI policy
generator NumCFI as well.

Experimental setup. In order to test CFINSIGHT and to
compare different CFI policy generators, we compute our
metrics for a number of benchmarks. From SPEC CPU2017,
the most recent version of a widely used benchmarking suite,
we select all benchmarks written in C, C++, or a mix of
the two, in their speed variant. For each benchmark, we
statically generate its CFG with angr and we use CFGgrind

10 9
10 8

10 7
10 6

10 5
10 4

10 3
10 2

10 1

BlockInsulation

0%

25%

50%

75%

100%

Cu
m

ul
at

iv
e

Pe
rc

en
ta

ge
 o

f B
lo

ck
s NoCFI

SoFCFI
NumArgCFI TypeCFI

Fig. 5. CDF of the distribution of BLOCKINSULATION of basic blocks
containing indirect calls, under different CFI policies.

to dynamically trace the execution; we use all input files that
compose the three SPEC workloads (test, train and refspeed).
Moreover, we prepare our own benchmark of the web server
nginx [1]: as inputs we use the official nginx test suite, which
is composed of 388 different configurations. We ran all tests
on a machine running Debian Sid, last updated in April 2021,
with a 32-core Intel Xeon Silver 4110 processor and 128 GB
of RAM.

BLOCKINSULATION. We evaluated BLOCKINSULATION for
every indirect call site in our benchmarks under four CFI
policy generators: NoCFI, SoFCFI, NumArgCFI, and Type-
CFI (in increasing order of strictness; we define them in
Section IV-B). In Figure 5, we visualize the distribution of
these metrics by plotting the Cumulative Distribution Func-
tion (CDF) of the BLOCKINSULATION over all indirect call
sites in all of our benchmarks4. Each point with coordinates
(x, y%) in these curves means that y% of the blocks have a
BLOCKINSULATION ≤ x. Since greater values of BLOCK-
INSULATION indicate that attacks are harder to perform, a
curve that is lower and to the right of the figure indicates a
more secure CFI policy generator. As expected, the least secure
policy generator is NoCFI, followed by SoFCFI, NumArgCFI,
and lastly TypeCFI.

CFGINSULATION. While we stress that a CDF of BLOCK-
INSULATION (like Figure 5) is the most complete way to
compare different policies, it is often useful to summarize
the results into a simpler numeric metric, which we introduce
in Section III-C. We define CFGINSULATION as the median
BLOCKINSULATION value for the indirect call sites of a
program (or the maximum finite value if the median is infinity).
Figure 6 shows the values of this metric for all benchmarks
we consider. For all benchmarks, the CFGINSULATION values
are in the expected order (TypeCFI, NumArgCFI, SoFCFI,
NoCFI). TypeCFI improves the CFGINSULATION by 3 to 7
orders of magnitude compared to NoCFI, by 1 to 5 orders
of magnitude compared to SoFCFI, and up to 3 orders of
magnitude compared to NumArgCFI.

4The graphs only show data about the main binaries. Our model also
considers the dynamic libraries, but we only use the information that can
be extracted from their binary and debug symbols, since compiling libraries
such as libc is a very complex process.

7

TABLE I. COMPARISON OF CFI POLICY GENERATORS USING EXISTING METRICS AND CFGINSULATION.

CFI policy generator mean(fAIR)* mean(fAIA)† sum(iCTR)† geomean(QS)* total CFGINSULATION*

NoCFI 0.00000% 6023518.4 324855240247 0.00000020 3.348766 · 10−10

SoFCFI 99.94011% 4504.8 406122077 0.00040833 1.154559 · 10−07

NumArgCFI 99.99284% 584.6 59811668 0.00233956 1.644561 · 10−06

TypeCFI 99.99720% 228.1 29684972 0.05289177 3.712601 · 10−03

* Higher is better. † Lower is better.

600.perlbench_s
602.gcc_s

605.mcf_s
619.lbm_s

620.omnetpp_s

623.xalancbmk_s

625.x264_s

631.deepsjeng_s

638.imagick_s

641.leela_s
644.nab_s

657.xz_s nginx total

Benchmark

10 9
10 8
10 7
10 6
10 5
10 4
10 3
10 2
10 1

CF
GI

ns
ul

at
io

n

NoCFI SoFCFI NumArgCFI TypeCFI

Fig. 6. CFGINSULATION for each benchmark we consider.

Other metrics. In order to validate our findings and compare
the results with other existing metrics, we compute a number
of CFI metrics over the same CFGs. Specifically, we compute:

• fAIR, the forward-edge variant of AIR [55]: the average
reduction in the number of allowed target for every
indirect function call (higher is better);

• a forward-edge variant of AIA [18] which we dub fAIA:
the average number of allowed targets for every indirect
function call (lower is better);

• iCTR [34]: the sum of the number of allowed targets for
every indirect function call (lower is better);

• QS (QuantitativeSecurity [6]), the product of the number
of equivalence classes and the inverse of the size of the
largest class (higher is better).

We compute all of these metrics for each of our bench-
marks. Since the metrics are defined in different ways, we
use different mathematical functions to summarize them. fAIR
and fAIA are defined as arithmetic means; hence, we report the
arithmetic mean of the individual results from the benchmarks.
iCTR is defined as a count, so we report the sum of the single
results; QS is a ratio, so we report its geometric mean. These
values, along with CFGINSULATION, are shown in Table I.
The metrics confirm that TypeCFI offers more security than
NumCFI, which is better than SoFCFI and NumArgCFI. In
Section VII we extend this analysis with our novel CFI policy
generators NumCFI.

VI. NUMCFI

We mentioned earlier that existing CFI metrics, like AIR,
consider basic blocks with the same label equivalent to each
other, leading to the division of basic blocks in equivalence
classes. Our answer to this shortcoming is to propose CFIN-
SIGHT, which analyzes a CFI-protected program in terms of
how easy it is for an attacker to reach a system call instruction.
The core insight is that a node that is close to a system call
instruction (e.g., node J in Figure 1) is more useful to an
attacker than farther nodes (e.g., node G). The same insight
can be applied to produce a novel CFI policy generator as
well, which led us to the definition of NumCFI.

The idea of NumCFI is to assign each basic block a tag,
which is the number of basic blocks on the shortest path
from the block to a system call instruction. As an example,
Figure 7 shows the tags that NumCFI assigns to the program
in Figure 1, assuming the path within Complex Function to be
10 blocks long. At run time, we enforce the property that the
tag can decrease by at most 1 for every call, i.e., a block b can
call a block c only if their tags tb, tc satisfy this property:

tc ≥ tb − 1 (1)

This prevents the attacker from “taking shortcuts” when
planning an attack, i.e., if the attacker wants to hijack the
control flow in a block with tag t, the attack chain needs to
go through at least t blocks before it reaches a system call

8

C

int (*p)(int);
p(42);

A

D

J

F

E M

S

mprotect();

G H

K

N

Complex Function
(safe)

0

1

2

3

2

∞

11

12 12

13

14

∞

Fig. 7. The same program of Figure 1, with the NumCFI tags for each block
in the blue circles. In this example we assume the path through the Complex
Function to be 10 blocks long.

instruction. Every basic block with no path to a system call
instruction receives a special tag ∞, which only allows it to
transfer control to other blocks with the tag ∞. NumCFI can
also be combined with an orthogonal CFI policy generator
based on labels, e.g., TypeCFI. We name this combined policy
generator Num+TypeCFI.

An interesting consequence of deploying NumCFI is that
it allows security analysts to focus their attention on a small
number of basic blocks with a low tag value, since they are
the blocks that the adversary might use to mount an attack.
Blocks with higher tag values can receive less attention, since
they would require long attack chains; blocks with tag ∞
can be outright ignored, since they cannot reach system call
instructions at all.

Below, we discuss how NumCFI prevents the nginx at-
tack described in [17]. We then describe how NumCFI and
Num+TypeCFI compare with other policy generators in Sec-
tion VII. Lastly, we write an implementation of Num+TypeCFI
and we evaluate its performance overhead in Section VIII.

Case Study: Nginx. Farkhani et al. [17] construct an at-
tack on nginx, protected by type-based CFI implementation
RAP [38] The attack leverages a collision between func-
tions with the same type. Specifically, the code of function
ngx_worker_process_exit contains an indirect func-
tion call to a function that takes no arguments. The attack
leverages this fact to hijack the control flow and call a different
function, ngx_master_process_cycle, which also takes
no arguments; from there, the control flow eventually reaches
an invocation of the system call execve. We applied NumCFI
to nginx 1.16.1 compiled for x86 64 Linux and we verified
that the tags of these two basic blocks differ by more than
1, i.e., Equation (1) is not satisfied and this control flow is

10 9
10 8

10 7
10 6

10 5
10 4

10 3
10 2

10 1 100 101

BlockInsulation

0%

25%

50%

75%

100%

Cu
m

ul
at

iv
e

Pe
rc

en
ta

ge
 o

f B
lo

ck
s

NoCFI
SoFCFI
NumArgCFI

TypeCFI
NumCFI

Num+TypeCFI
StrictCFI

Fig. 8. CDF of the distribution of BLOCKINSULATION of basic blocks
containing indirect calls, under different CFI policies.

disallowed. Hence, NumCFI protects nginx from the attack
described in [17].

A downside of all CFI implementations is that, if a valid
edge is missing in its input CFG, attempting to follow that
edge in the program will lead to a false-positive CFI violation.
For example, the authors of RAP [38], encountered missing
edges caused by incorrect type signatures in the source code
of programs. The issue of missing edges also presents itself
in NumCFI. The root cause of this issue is the well-known
difficulty of generating a precise CFG of a program. While
improving CFG generation techniques is outside of the scope
of this paper, there are ways to mitigate this issue. First,
one can combine multiple CFG generation approaches. In our
prototype implementation of CFINSIGHT, we combine angr
and CFGgrind as representatives of static and dynamic analysis
tools. However, any other more advanced static analysis tool
can be used as well. The dynamic analysis can be improved
by increasing the number and quality of the input files. Good
software engineering practices recommend the presence of a
test suite which is as thorough as possible. As a result, tracing
the execution of this comprehensive test suite ensures that
any tested functionality is covered in the generated CFG. The
coverage generated by the test suite can further be improved
with other techniques such as fuzzing. Finally, if the core
functionality of the program is covered by tests, any false
positive that is still present is by definition only incurred in
rare circumstances. These false positives can then be manually
addressed just like any other rare bug.

VII. CFINSIGHT: COMPARISON OF NUMCFI

In this section, we extend the results of Section V by
considering NumCFI as well. We use the same experimental
setup and benchmarks we describe in Section V. Due to an
imperfect CFG generation, for some indirect call sites we do
not know of any legal outgoing edge: in order to ensure a fair
comparison between policy generators, we omit these nodes
from the following analysis.

In addition to the existing CFI policy generators (TypeCFI,
NumArgCFI, SoFCFI, NoCFI), we analyze NumCFI, our new

9

TABLE II. COMPARISON OF NUMCFI WITH OTHER CFI POLICY GENERATORS USING EXISTING CFI METRICS AND CFGINSULATION.

CFI policy generator mean(fAIR)* mean(fAIA)† sum(iCTR)† geomean(QS)* total CFGINSULATION*

NoCFI 0.00000% (7) 6023518.4 (7) 75153429826 (7) 0.00000020 (7) 3.348766 · 10−10 (7)
SoFCFI 99.94011% (6) 4504.8 (6) 83776616 (6) 0.00040833 (6) 1.161153 · 10−07 (6)
NumArgCFI 99.98757% (4) 1039.4 (4) 22424457 (4) 0.00197575 (4) 1.647973 · 10−06 (5)
TypeCFI 99.99498% (3) 390.6 (3) 8077681 (3) 0.04507330 (3) 3.856191 · 10−06 (4)
NumCFI 99.95866% (5) 3055.5 (5) 60548479 (5) 0.00045113 (5) 2.184315 · 10−05 (3)
Num+TypeCFI 99.99665% (2) 260.1 (2) 5615941 (2) 0.05484967 (2) 1.109534 · 10−04 (2)
StrictCFI 99.99996% (1) 2.0 (1) 10974 (1) 1.65245297 (1) 3.225806 · 10−02 (1)

* Higher is better. † Lower is better. (The number in parentheses is the rank of each CFI policy generator according to each metric.)

600.perlbench_s
602.gcc_s

605.mcf_s
619.lbm_s

620.omnetpp_s

623.xalancbmk_s

625.x264_s

631.deepsjeng_s

638.imagick_s

641.leela_s
644.nab_s

657.xz_s nginx total

Benchmark

10 9
10 8
10 7
10 6
10 5
10 4
10 3
10 2
10 1

CF
GI

ns
ul

at
io

n

NoCFI
SoFCFI

NumArgCFI
TypeCFI

NumCFI
Num+TypeCFI

StrictCFI

Fig. 9. CFGINSULATION for each benchmark we consider.

CFI policy generator, as well as Num+TypeCFI, which is
the combination of NumCFI and TypeCFI. Finally, we define
StrictCFI as a CFI policy that only allows legal edges, without
any overapproximation. StrictCFI serves as an indication of
the best possible context-insensitive CFI policy that can be
obtained for the binaries we consider.

BLOCKINSULATION. In Figure 8, we show the cumulative
distribution (CDF) of BLOCKINSULATION over the call sites.
As we mentioned earlier, curves that are lower and to the
right indicate more secure CFI policies. As expected, StrictCFI
is the most secure policy, since it does not introduce any
overapproximation. The BLOCKINSULATION of NumCFI is
approximately one order of magnitude greater than TypeCFI,
which is the best CFI policy generator currently deployed on a
large scale. Moreover, Num+TypeCFI combines the strengths
of both its components, further increasing the BLOCKINSU-
LATION by one order of magnitude.

CFGINSULATION. As we mentioned, the most expressive
way to compare two policies with the help of CFINSIGHT, is
to look at a CDF (like Figure 8). However, we also define a
numeric summary, CFGINSULATION. In Figure 9, we show
the CFGINSULATION values for every benchmark and every
CFI policy generator we consider.

The CFGINSULATION of NumCFI is approximately 5
times greater than TypeCFI considering all call sites together.

Considering the benchmarks separately, in six of them Num-
CFI has a higher CFGINSULATION than TypeCFI, while for
seven benchmarks TypeCFI has a higher CFGINSULATION.
The latter seven are the benchmarks with the lowest amount
of basic blocks and, hence, a distance-based CFI policy is less
effective for them. For more complex applications, like the
other six benchmarks, NumCFI shows a better performance
than TypeCFI.

Moreover, Num+TypeCFI has a better CFGINSULATION
than TypeCFI in every benchmark. Considering all call sites
together, Num+TypeCFI has a CFGINSULATION which is
approximately 29 times greater than TypeCFI. For eight bench-
marks the improvement is at least tenfold.

Other metrics. We also compare NumCFI and
Num+TypeCFI using other the existing metrics we select in
Section V: fAIR [55], fAIA [18], iCTR [34] and QS [6]. We
report the value of these metrics in Table II. We also report,
in parentheses, the rank of every policy generator according
to each metric (1 marks the best and 7 marks the worst).

We can make a number of observations from Table II. First,
according to all metrics we examine (both our metrics and ex-
isting metrics), Num+TypeCFI outperforms both NumCFI and
TypeCFI, always ranking second after the baseline. Second,
all CFI policy generators have very high fAIR (above 99.9%),
proving the point that AIR is not an effective metric to evaluate

10

the security guarantees of CFI policies. Third, other metrics,
like fAIA, iCTR, and QS, show a more significant variation
between the policy generators we evaluate. However, they have
a disadvantage. They only consider the number of targets that
are reachable; yet, they neglect to take into consideration the
usefulness of the blocks for an attacker. BLOCKINSULATION
and CFGINSULATION overcome this limitation, taking into
account the usefulness of each basic block to the adversary.

VIII. L+TCFI

In the previous Section, we evaluate the security of a
number of CFI policy generators, including NumCFI and
Num+TypeCFI. This Section shows that the generated policies
can be implemented in an efficient way, with a low run-time
overhead.

To do so, we design L+TCFI, a generic CFI enforcement
mechanism. In L+TCFI, every basic block b has two prop-
erties, a label lb and a tag tb. The label is determined by
a label-based CFI policy generator like TypeCFI, while the
tag is determined by a distance-based policy generator like
NumCFI. The mechanism is designed to allow control flow
transfers between a block b and a block c if and only if both
of these conditions are met:

tc ≥ tb − 1 (1)
lc = lb (2)

Ensuring the enforcement of these conditions requires two
components: 1) a way to encode the metadata (tags and labels)
in the program itself, and 2) a run-time component that decides
whether indirect jumps are allowed depending on the encoded
information. We discuss both of them in the following.

A. Metadata Encoding

A common strategy for CFI metadata encoding is to embed
it in the executable code itself. As an example, RAP [38]
inserts the metadata immediately before the beginning of every
function in the program. This way, when the run-time checker
needs to decide whether a jump to a pointer should be allowed,
it can simply read a fixed number of bytes before the pointer
and retrieve the metadata. We use this approach as well.

However, embedding metadata in the executable code must
be done carefully, in order to not introduce any incompatibility
or vulnerability in the application. We do this by embedding
our metadata inside of CFI marks. Our CFI marks are inter-
preted by the CPU as a nop instruction, which do not produce
any result (the name stands for “no operation”). The advantage
of embedding data in nop instructions is that, unlike raw data,
the processor can execute them without changing its state,
so they can be easily inserted into the code during the build
process.

On x86, nop instructions can have different lengths; we
choose the 9-byte variant because of its convenience for our
purposes. This longer variant of the nop instruction is achieved
by encoding information on various operands (register and
immediate), which are then ignored by the processor. For
our purposes, we can consider the leftmost four bytes of the

66 0f 1f 84 a9 00 00 00 00
8 7 6 5 4 3 2 1 0

label tag

CFI mark

Fig. 10. A CFI mark which embeds metadata in a nop instruction.

instruction fixed (bytes 8 to 5 in Figure 10). The following
byte (4) has multiple legal values which do not influence
the behavior of the processor; we choose value 0x9a, since
it is different from the value in Intel’s recommended 9-byte
nop instruction and thus very unlikely to occur in any regular
code. The rightmost four bytes of the instruction (bytes 3 to 0
in Figure 10) can be set to any arbitrary value; we decide
to encode the label in bytes 3 to 1, and the tag in byte
0. This layout is advantageous for the run-time checker, as
Section VIII-B explains; it allows us to encode approximately
16 million labels and 256 tags, which is sufficient in our
testing. We encode tag ∞ as 255, any tag ≥ 254 as 254,
and any other tag as itself.

We insert the CFI marks in the program by 1) instructing
the compiler to create an ELF section for every function, and 2)
using a custom linker script to insert these instructions between
them in the final binary. We insert the marks in assembly files
by rewriting them on the fly and adding the required instruction
before every function definition.

B. Run-time Checker

The run-time checker has the goal of examining every
indirect control flow transfer and decide whether it is allowed
or not according to the metadata. We instrument every indirect
control flow transfer by developing a custom pass for the Clang
C/C++ compiler. Our compiler pass, which was developed for
LLVM 11.0.1 and consists of approximately 60 lines of C++

code, finds all indirect function calls and instruments them
to check the target address before it is used. Our proof-of-
concept implementation does not embed checks in assembly
code, which is only a tiny portion of the application code.

The instrumentation code checks that the target address
is preceded by a valid CFI mark and that the tags and labels
are correct (satisfying Equations (1) and (2) respectively). This
can be done with just two comparisons: a single 64-bit equality
test can check the presence of a CFI mark and that the labels
match (2), while a 8-bit comparison can check whether the
target label is greater than the threshold (1).

C. Security Considerations

The goal of L+TCFI is to allow an indirect call if and
only if Equations (1) and (2) hold. Our run-time checker
(Section VIII-B) is designed to check for CFI marks, which
contain the label and tag of a function, before the indirect
control flow transfer succeeds. Since we assume W⊕X to be
in place (Assumption A3), the adversary is unable to insert
counterfeit CFI marks into the application. The adversary
could, however, leverage data which accidentally matches the
format of a CFI mark and is included in the code of the
application. To investigate this possibility, we scanned for the

11

60
0.p

er
lbe

nc
h_

s
60

2.g
cc

_s
60

5.m
cf_

s
62

0.o
mne

tp
p_

s
62

3.x
ala

nc
bm

k_
s

62
5.x

26
4_

s
63

1.d
ee

ps
jen

g_
s

64
1.l

ee
la_

s
65

7.x
z_

s
61

9.l
bm

_s
63

8.i
mag

ick
_s

64
4.n

ab
_s

ge
om

ea
n

Benchmark

0%

2%

4%

Ru
n

tim
e

ov
er

he
ad

Fig. 11. Run-time overhead of SPEC CPU2017 benchmarks when using
L+TCFI.

prefix of our CFI marks (the binary string 660f1f84a9)
all the baseline binaries used in our performance evaluations,
as well as all binaries in the directories /bin, /sbin, and
/lib/x86_64-linux-gnu on our test system. We did not
find any match. We can then assume that accidental matches
are very unlikely and, hence, the attacker cannot trick the run-
time checker into calling an unintended target.

D. Handling Dynamic Libraries

Binaries are often distributed independently of the dynamic
libraries they require to work. As a result, it can be impractical
to apply the CFI marks to all the libraries as well as the
main binary. This can be addressed by using trampolines that
intercept indirect function calls between different libraries.
Each trampoline has a CFI mark that contains the expected
distance of the target function in a different library. As a result,
even if the dynamic library is independently updated, the CFI
marks on the trampolines remain the same and functionality
is maintained.

E. Performance Evaluation

After describing L+TCFI, we analyze its performance
using the run time overhead of the benchmarks we selected
from SPEC CPU2017 benchmarks, as well as measuring the
reduction of available throughput of an nginx instance.

Benchmarks from SPEC CPU2017. First, we analyze the
performance of SPEC CPU2017 benchmarks when protected
by L+TCFI compared to an unprotected baseline (Figure 11).
We run every benchmark three times on the same ma-
chine mentioned in Section VII; we report the median of
the three values, as recommended by SPEC. The geometric
mean of the overheads is 1.27%. Only two benchmarks have
an overhead higher than 3%: 600.perlbench s (3.33%) and
623.xalancbmk s (5.16%). Unsurprisingly, these benchmarks
have a higher proportion of indirect function calls compared
to other benchmarks.

Nginx Throughput. In addition to SPEC, we also test the
effect of L+TCFI on the throughput of an nginx instance.
We configure nginx to only use one worker thread, then we

16B 64B 256B 1K 4K

20

40

60

80

100

Th
ro

ug
hp

ut
 (M

B/
s)

HTTP

16B 64B 256B 1K 4K

HTTPS
c+dCFI
Baseline

16B 64B 256B 1K 4K
File size

0%

1%

2%

Th
ro

ug
hp

ut
 re

du
ct

io
n

16B 64B 256B 1K 4K
File size

Fig. 12. Throughput and throughput reduction in nginx when using L+TCFI.

run the tool wrk [20] on a different machine to determine
the connection throughput of a build of nginx protected by
L+TCFI compared to an unprotected baseline (Figure 12). The
client machine has an Intel Xeon CPU E5-2630 processor and
uses its 16 threads to maintain 1024 simultaneous connections.
The two machines are connected through a Gigabit Ethernet
switch. In our tests we use a number of randomly-generated
files having size between 16 bytes and 1 MB, and we access
those files through unencrypted HTTP and HTTPS. Our tests
show that any file of at least 2 KB is sufficient to saturate the
Gigabit Ethernet connection while using HTTP, and any file of
at least 3 KB saturates it while using HTTPS; in both cases,
there is no measurable overhead above these marks. For that
reason, we do not show files bigger than 4 KB in the figure.
For smaller file sizes we can measure an overhead: considering
only the files of size 1 KB or smaller, the geometric mean of
the throughput reduction is 0.29% for HTTP and 1.99% for
HTTPS.

Both our tests show performance reductions in the order of 1%
to 2%, which attests that L+TCFI can be deployed in practice.

IX. RELATED WORK

In this section we give an overview of works in the
fields of CFI policies, benchmarks, as well as attacks on CFI
implementations.

A. CFI Schemes

A common design aspect of CFI policies is to assign equiv-
alence classes to every indirect caller and callee, and check that
the label of the caller matches that of the callee. The first CFI
policy, as proposed by Abadi et al. [2], uses CFGs generated by
static analysis to derive labels for valid control-flow transfers
between callers and callees, then enforces their match at run

12

time using inserted checks. Later, Zhang et al. [55] extend
this idea to binaries using binary instrumentation. Similarly,
Zhang et al. [54] propose a randomized ”Springboard section”
to encode a CFI policy implicitly by knowing the correct entry
for the indirect jump in this springboard. This technique is
also used by Tice et al. [51] in combination with a vtable
protection to create a fine-grained, forward-edge CFI compiler
pass for GCC and LLVM. Lockdown [39] uses dynamic
binary instrumentation to inject CFI checks dynamically at run
time. For backward-edge protection, Lockdown uses a shadow
stack that is also guarded by dynamic checks. However, this
flexibility incurs a higher performance overhead.

Another promising approach is enforcing type-based poli-
cies to restrict control-flow transfers. For example, TypeAr-
mor [53] leverages binary-analysis techniques to infer the pa-
rameter count of a function, to restrict call targets to functions
with less or equal amount of parameters than prepared by the
caller. τCFI [33] extends this approach by also taking the
parameter types into consideration and leverages a points-to
analysis for the return instruction to protect the backward edge.
MARX [36], as well as VCI [15], augment CFI mechanisms
with efficient vtable protection by leveraging reconstructed
class hierarchies to reduce the overapproximation of, e.g., type-
based CFI policies [33]. Type-based CFI policies often imply a
relatively low performance overhead, hence, the clang compiler
frontend of LLVM also features a type-based CFI policy [30]
that checks a variety of dynamic types. All of these label-based
CFI implementations do not consider the distance of blocks to
a system call, which we introduce with NumCFI, that prevents
the attacker from taking shortcuts from the vulnerability to a
system call.

A different line of research investigates context-sensitive
CFI schemes, which consider some form of context to decide
whether an indirect call should be allowed. PathArmor [52]
compares the latest 16 taken branches against a statically
generated list whenever the application calls sensitive system
calls. πCFI [35] dynamically constructs a CFG at run time, in
order to restrict the legal targets of return instructions, but it
is similar to context-insensitive CFI for forward edges. Pitty-
Pat [14] intercepts security-sensitive system calls and validates
the control flow of the program based on online points-to
analysis of a subset of control-relevant data. µCFI [23] extends
this analysis to include more constraint data and further refine
the sets of allowed targets from any indirect call. OS-CFI [27]
focuses on reducing the size of the biggest equivalence class
by leveraging information about the origin of the code-pointer
used by the indirect call.

B. CFI Benchmarks

In order to compare the security of CFI policies, it is crucial
to quantify and compare how restrictive they are. A number
of metrics have been proposed for this purpose. The best-
known metric is Average Indirect-target Reduction (AIR) [55],
which is defined as the average reduction of allowed targets
across every CFG node (the higher the better). However, AIR
is not a good metric to compare different policies [51], as
most CFI papers that rely on AIR report similar values greater
than 99% [6]. Other metrics also have been proposed, e.g.,
QuantitiveSecurity [6], which is based on the number and size
of equivalence classes, AIA [18], which measures the average

number of allowed indirect targets, or Calltarget Reduction
(CTR) [34], which measures the absolute number of remaining
call targets after applying a CFI defense. However, all of these
metrics have a common pitfall: they consider every basic block
equivalent to each other. The goal of an attacker in most
cases is to leak the content of some memory, exfiltrate some
files, or install malware on the victim machine. The first goal
is trivially possible in the common CFI threat model which
includes arbitrary data read capabilities. The second and the
third goal require accessing system resources, for which the
attacker needs to use system calls. While other metrics do
not consider whether an edge is useful to allow the attacker
to reach a system call, CFINSIGHT is the only CFI evaluation
framework that considers this goal rather than merely the count
of reachable blocks.

C. Attacks on CFI

Although CFI can be a strong defense even in practical
scenarios, bypasses are possible, and can also be found in
practice. While Göktas et al. [21], as well as Davi et al. [13],
demonstrated that coarse-grained CFI can be bypassed with
new types of ROP gadgets due to the low number of labels,
the first work presenting a bypass for more secure fine-grained
CFI defenses was Control-Flow Bending [7]. It shows that a
single printf call can lead to Turing-complete computation
by abusing the right format specifiers, allowing the attacker
to overwrite the return address of printf, even in the
presence of a fully-precise static CFI implementation. Control
Jujutsu [16], instead, exploits insecure programming patterns
and the impreciseness of static analysis approaches to find
legal but unintended control flows, which can be leveraged for
attacks. Most of this impreciseness is caused by the central
element needed for CFG creation: the complete points-to
analysis for pointers, which is undecidable [42], [22], and,
hence, hard to achieve in practice. Another work uses specifics
of C++, namely vtable pointers, to chain virtual function calls
through existing call sites, allowing the attack to be resistant
against even fine-grained CFI enforcement [44]. Recently,
multiple CFI bypasses switched to data-only attacks, in which
the adversary corrupts only non-control data. These attacks can
inherently bypass any kind of static CFI, as they chain only
legitimate control-flow paths. While there are already solutions
that automatically generate payloads [26], [40], they are still
limited in target executable size due to heavy use of static
analysis.

X. CONCLUSION

In this paper, we present CFINSIGHT, a novel framework
to evaluate the security guarantees of CFI policies. With our
novel metrics BLOCKINSULATION and CFGINSULATION we
measure the usefulness of any basic block to constructing
a code-reuse attack targeting a system call instruction. We
introduce NumCFI, a novel CFI policy generator based on the
distance between each basic block and the closest system call
instruction. We use CFINSIGHT to analyze seven CFI policy
generators, including NumCFI, using five different metrics,
including CFGINSULATION. Lastly, we describe L+TCFI,
a fast implementation of NumCFI combined with a type-
based policy, with a performance overhead of just 1.27% on
benchmarks from the SPEC CPU2017 suite.

13

ACKNOWLEDGMENTS

This work was supported in part by the Deutsche
Forschungsgemeinschaft (DFG) – SFB 1119 – 236615297,
by the European Space Operations Centre with the Network-
ing/Partnering Initiative, by Huawei within the OpenS3 Lab,
by the German Federal Ministry of Education and Research
and the Hessian State Ministry for Higher Education, Research
and the Arts within ATHENE, and by the European Research
Council (ERC) under the European Union’s Horizon 2020
research and innovation programme (grant agreement No.
952697).

REFERENCES

[1] “nginx,” http://nginx.org.
[2] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “CFI: Principles,

implementations, and applications,” in Proc. ACM Conference and
Computer and Communications Security, 2005.

[3] O. Arias, L. Davi, M. Hanreich, Y. Jin, P. Koeberl, D. Paul, A.-R.
Sadeghi, and D. Sullivan, “HAFIX: Hardware-Assisted Flow Integrity
Extension,” in 52nd Design Automation Conference, 2015.

[4] E. Bendersky, “pyelftools,” https://github.com/eliben/pyelftools, Jul
2020.

[5] N. Burow, X. Zhang, and M. Payer, “SoK: Shining light on shadow
stacks,” in 2019IEEE Symposium on Security and Privacy, 2019.

[6] N. Burow, S. A. Carr, J. Nash, P. Larsen, M. Franz, S. Brunthaler,
and M. Payer, “Control-Flow Integrity: Precision, Security, and
Performance,” ACM Comput. Surv., vol. 50, no. 1, Apr. 2017. [Online].
Available: https://doi.org/10.1145/3054924

[7] N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. R. Gross, “Control-
flow bending: On the effectiveness of control-flow integrity,” in 24th
USENIX Security Symposium, 2015.

[8] M. Castro, M. Costa, and T. Harris, “Securing software by enforcing
data-flow integrity,” in Proceedings of the 7th symposium on Operating
systems design and implementation, 2006.

[9] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi, H. Shacham,
and M. Winandy, “Return-oriented programming without returns,” in
Proceedings of the 17th ACM conference on Computer and communi-
cations security, 2010.

[10] W. Chen, “Here’s that FBI Firefox exploit for you (cve-2013-1690),”
https://community.rapid7.com/community/metasploit/blog/2013/08/07/
heres-that-fbi-firefox-exploit-for-you-cve-2013-1690, 2013.

[11] S. Crane, C. Liebchen, A. Homescu, L. Davi, P. Larsen, A.-R. Sadeghi,
S. Brunthaler, and M. Franz, “Readactor: Practical code randomization
resilient to memory disclosure,” in 36th IEEE Symposium on Security
and Privacy, 2015.

[12] L. Davi, P. Koeberl, and A.-R. Sadeghi, “Hardware-assisted fine-grained
control-flow integrity: Towards efficient protection of embedded sys-
tems against software exploitation,” in Design Automation Conference,
2014.

[13] L. Davi, A.-R. Sadeghi, D. Lehmann, and F. Monrose, “Stitching the
gadgets: On the ineffectiveness of coarse-grained control-flow integrity
protection,” in 23rd USENIX Security Symposium, 2014.

[14] R. Ding, C. Qian, C. Song, B. Harris, T. Kim, and W. Lee, “Efficient
protection of path-sensitive control security,” in 26th USENIX Security
Symposium, 2017.

[15] M. Elsabagh, D. Fleck, and A. Stavrou, “Strict virtual call integrity
checking for C++ binaries,” in Proceedings of the 2017 ACM on Asia
Conference on Computer and Communications Security, 2017.

[16] I. Evans, F. Long, U. Otgonbaatar, H. Shrobe, M. Rinard, H. Okhravi,
and S. Sidiroglou-Douskos, “Control jujutsu: On the weaknesses of
fine-grained control flow integrity,” in Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security, 2015.

[17] R. M. Farkhani, S. Jafari, S. Arshad, W. Robertson, E. Kirda, and
H. Okhravi, “On the effectiveness of type-based control flow integrity,”
in Proceedings of the 34th Annual Computer Security Applications
Conference, 2018.

[18] X. Ge, N. Talele, M. Payer, and T. Jaeger, “Fine-grained control-flow
integrity for kernel software,” in 2016 IEEE European Symposium on
Security and Privacy, 2016.

[19] X. Ge, N. Talele, M. Payer, and T. Jaeger, “Fine-grained control-flow
integrity for kernel software,” in 1st IEEE European Symposium on
Security and Privacy, 2016.

[20] W. Glozer, “wrk - a http benchmarking tool,” https://github.com/wg/
wrk, Apr 2019.

[21] E. Göktas, E. Athanasopoulos, H. Bos, and G. Portokalidis, “Out of
control: Overcoming control-flow integrity,” in 2014 IEEE Symposium
on Security and Privacy, 2014.

[22] S. Horwitz, “Precise flow-insensitive may-alias analysis is np-hard,”
ACM Transactions on Programming Languages and Systems, vol. 19,
no. 1, 1997.

[23] H. Hu, C. Qian, C. Yagemann, S. P. H. Chung, W. R. Harris, T. Kim,
and W. Lee, “Enforcing unique code target property for control-flow
integrity,” in Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, 2018.

[24] H. Hu, S. Shinde, S. Adrian, Z. L. Chua, P. Saxena, and Z. Liang,
“Data-oriented programming: On the expressiveness of non-control data
attacks,” in 2016 IEEE Symposium on Security and Privacy, 2016.

[25] Intel Corporation, “Control-flow enforcement technology preview.”
https://software.intel.com/sites/default/files/managed/4d/2a/control-
flow-enforcement-technology-preview.pdf, 2017.

[26] K. K. Ispoglou, B. AlBassam, T. Jaeger, and M. Payer, “Block oriented
programming: Automating data-only attacks,” in Proceedings of the
25th ACM SIGSAC Conference on Computer and Communications
Security, 2018.

[27] M. R. Khandaker, W. Liu, A. Naser, Z. Wang, and J. Yang, “Origin-
sensitive control flow integrity,” in 28th USENIX Security Symposium,
2019.

[28] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and D. Song,
“Code-Pointer Integrity,” in 11th USENIX Symposium on Operating
Systems Design and Implementation, 2014.

[29] A. Limited, “Arm® a64 instruction set architecture: Future
architecture technologies in the a architecture profile,”
https://developer.arm.com/docs/ddi0602/f/base-instructions-alphabetic-
order/bti-branch-target-identification, 2020.

[30] LLVM, “Clang documentation, control-flow integrity,”
http://clang.llvm.org/docs/ControlFlowIntegrity.html, Jul 2020.

[31] T. McCabe, “A complexity measure,” IEEE Transactions on Software
Engineering, vol. SE-2, no. 4, 1976.

[32] Microsoft, “Control flow guard for clang/llvm and rust,”
https://msrc-blog.microsoft.com/2020/08/17/control-flow-guard-
for-clang-llvm-and-rust/, 2020.

[33] P. Muntean, M. Fischer, G. Tan, Z. Lin, J. Grossklags, and C. Eck-
ert, “τCFI: Type-assisted control flow integrity for x86-64 binaries,”
in International Symposium on Research in Attacks, Intrusions, and
Defenses, 2018.

[34] P. Muntean, M. Neumayer, Z. Lin, G. Tan, J. Grossklags, and C. Eckert,
“Analyzing control flow integrity with LLVM-CFI,” in Proceedings of
the 35th Annual Computer Security Applications Conference, 2019, p.
584–597. [Online]. Available: https://doi.org/10.1145/3359789.3359806

[35] B. Niu and G. Tan, “Per-input control-flow integrity,” in Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications
Security, 2015.

[36] A. Pawlowski, M. Contag, V. van der Veen, C. Ouwehand, T. Holz,
H. Bos, E. Athanasopoulos, and C. Giuffrida, “Marx: Uncovering
class hierarchies in C++ programs.” in Symposium on Network and
Distributed System Security, 2017.

[37] PaX Team, “Pax address space layout randomization (ASLR),” http:
//pax.grsecurity.net/docs/aslr.txt.

[38] PaX Team, “RAP: RIP ROP,” 2015.

[39] M. Payer, A. Barresi, and T. R. Gross, “Fine-grained control-flow
integrity through binary hardening,” in International Conference on
Detection of Intrusions and Malware, and Vulnerability Assessment,
2015.

[40] J. Pewny, P. Koppe, and T. Holz, “Steroids for doped applications:

14

http://nginx.org
https://github.com/eliben/pyelftools
https://doi.org/10.1145/3054924
https://community.rapid7.com/community/metasploit/blog/2013/08/07/heres-that-fbi-firefox-exploit-for-you-cve-2013-1690
https://community.rapid7.com/community/metasploit/blog/2013/08/07/heres-that-fbi-firefox-exploit-for-you-cve-2013-1690
https://github.com/wg/wrk
https://github.com/wg/wrk
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://developer.arm.com/docs/ddi0602/f/base-instructions-alphabetic-order/bti-branch-target-identification
https://developer.arm.com/docs/ddi0602/f/base-instructions-alphabetic-order/bti-branch-target-identification
http://clang.llvm.org/docs/ControlFlowIntegrity.html
https://msrc-blog.microsoft.com/2020/08/17/control-flow-guard-for-clang-llvm-and-rust/
https://msrc-blog.microsoft.com/2020/08/17/control-flow-guard-for-clang-llvm-and-rust/
https://doi.org/10.1145/3359789.3359806
http://pax.grsecurity.net/docs/aslr.txt
http://pax.grsecurity.net/docs/aslr.txt

A compiler for automated data-oriented programming,” in 2019 IEEE
European Symposium on Security and Privacy, 2019.

[41] Qualcomm Technologies Inc., “Pointer authentication on armv8.3,”
https://www.qualcomm.com/media/documents/files/whitepaper-
pointer-authentication-on-armv8-3.pdf, 2017.

[42] G. Ramalingam, “The undecidability of aliasing,” ACM Transactions
on Programming Languages and Systems, vol. 16, no. 5, 1994.

[43] A. Rimsa, “Cfggrind,” https://github.com/rimsa/CFGgrind, Jul 2020.
[44] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R. Sadeghi, and

T. Holz, “Counterfeit object-oriented programming: On the difficulty
of preventing code reuse attacks in C++ applications,” in 2015 IEEE
Symposium on Security and Privacy, 2015.

[45] H. Shacham, “The geometry of innocent flesh on the bone: Return-into-
libc without function calls (on the x86),” in Proceedings of the 14th
ACM conference on Computer and communications security, 2007.

[46] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino,
A. Dutcher, J. Grosen, S. Feng, C. Hauser, C. Kruegel, and G. Vigna,
“SoK: (State of) The Art of War: Offensive Techniques in Binary
Analysis,” in IEEE Symposium on Security and Privacy, 2016.

[47] H. Sidhpurwala, “Hardening ELF binaries using Relocation Read-Only
(RELRO),” Red Hat Blog, https://www.redhat.com/en/blog/hardening-
elf-binaries-using-relocation-read-only-relro, 2019.

[48] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and
A.-R. Sadeghi, “Just-in-time code reuse: On the effectiveness of fine-
grained address space layout randomization,” in IEEE Symposium on
Security and Privacy, 2013.

[49] Solar Designer, “Getting around non-executable stack (and fix),” https:
//seclists.org/bugtraq/1997/Aug/63, 1997.

[50] C. Song, H. Moon, M. Alam, I. Yun, B. Lee, T. Kim, W. Lee, and
Y. Paek, “HDFI: Hardware-Assisted Data-Flow Isolation,” in 2016 IEEE
Symposium on Security and Privacy, 2016.

[51] C. Tice, T. Roeder, P. Collingbourne, S. Checkoway, Ú. Erlingsson,
L. Lozano, and G. Pike, “Enforcing forward-edge control-flow integrity
in GCC & LLVM,” in 23rd USENIX Security Symposium, 2014.

[52] V. van der Veen, D. Andriesse, E. Göktaş, B. Gras, L. Sambuc,
A. Slowinska, H. Bos, and C. Giuffrida, “Practical context-sensitive
CFI,” in Proceedings of the 22nd ACM SIGSAC Conference on Com-
puter and Communications Security, 2015.

[53] V. Van Der Veen, E. Göktas, M. Contag, A. Pawoloski, X. Chen,
S. Rawat, H. Bos, T. Holz, E. Athanasopoulos, and C. Giuffrida, “A
tough call: Mitigating advanced code-reuse attacks at the binary level,”
in 2016 IEEE Symposium on Security and Privacy, 2016.

[54] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant,
D. Song, and W. Zou, “Practical control flow integrity and random-
ization for binary executables,” in 2013 IEEE Symposium on Security
and Privacy, 2013.

[55] M. Zhang and R. Sekar, “Control flow integrity for COTS binaries,” in
22nd USENIX Security Symposium, 2013.

15

https://www.qualcomm.com/media/documents/files/whitepaper-pointer-authentication-on-armv8-3.pdf
https://www.qualcomm.com/media/documents/files/whitepaper-pointer-authentication-on-armv8-3.pdf
https://github.com/rimsa/CFGgrind
https://www.redhat.com/en/blog/hardening-elf-binaries-using-relocation-read-only-relro
https://www.redhat.com/en/blog/hardening-elf-binaries-using-relocation-read-only-relro
https://seclists.org/bugtraq/1997/Aug/63
https://seclists.org/bugtraq/1997/Aug/63

	Introduction
	Background
	Control-Flow Graphs
	Run-time Attacks
	Control-Flow Integrity

	CFInsight
	Threat Model and Assumptions
	Our Observations: Single-Node Metric
	Whole-Program Metric

	CFInsight Analyzer
	CFG Generation
	Overapproximating the CFG
	Computing Our Metric
	Extensions and Discussion

	CFInsight: Implementation and Results
	Analyzer: Implementation Notes
	Results

	NumCFI
	CFInsight: Comparison of NumCFI
	l+tCFI
	Metadata Encoding
	Run-time Checker
	Security Considerations
	Handling Dynamic Libraries
	Performance Evaluation

	Related Work
	CFI Schemes
	CFI Benchmarks
	Attacks on CFI

	Conclusion
	References

