RAISING THE BAR:

ADVANCING MITIGATIONS
AGAINST MEMORY-CORRUPTION
AND SIDE-CHANNEL ATTACKS

TOMMASO FRASSETTO

Cumulative Dissertation
submitted in fulfilment of the requirements
for the degree of Doktor-Ingenieur (Dr.-Ing.)

First Ph.D. Referee:
Prof. Dr.-Ing. Ahmad-Reza Sadeghi

Second Ph.D. Referee:
Prof. Mauro Conti

TECHNISCHE
UNIVERSITAT
DARMSTADT

System Security Lab
Fachbereich Informatik
Technische Universitat Darmstadt

Darmstadt 2022

Tommaso Frassetto:

Raising The Bar: Advancing Mitigations Against Memory-Corruption and Side-
Channel Attacks
© 2022

Darmstadt, Technische Universitdt Darmstadt

Year thesis published in TUprints 2022
URN of the Dissertation urn:nbn:de:tuda-tuprints-214363
Date of the Defense May 19, 2022

This work islicensed under a Creative Commons Attribution-
s NonCommercial-NoDerivatives 4.0 International License.

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

ABSTRACT

The complexity of computer programs has been increasing for multiple
decades. As a result, the number and impact of security vulnerabilities have
been rising as well. Memory-corruption attacks have been one of the most
severe security threats for decades, despite the tremendous efforts of the
security community: according to data published by Microsoft in 2019, 70% of
vulnerabilities addressed in security updates during the previous decade are
memory safety issues. Similarly, according to the 2021 CWE Top 25, two out
of the three most dangerous vulnerability categories are related to memory
corruption.

A variety of approaches have been proposed that aim to either discover
vulnerabilities before they are deployed to a production environment, or
to mitigate vulnerabilities by making them harder to exploit. The former
case includes strategies like static analysis, test suites, and fuzzing. While
these methods are important and beneficial, it is not feasible to find all soft-
ware bugs: most deployed software projects suffer from memory-corruption
vulnerabilities, in particular if they contain legacy code.

Hence, it is crucial to investigate, develop, and deploy mitigations, in order
to make exploitation of these vulnerabilities substantially harder or even
infeasible. Three prominent approaches are software diversity (e.g., random-
ization), integrity checks (e.g., CFI), and memory isolation (e.g., TEEs). The
scope of this cumulative dissertation includes contributions to these three
mitigation approaches, as well as applications to more practical problems.

The idea of software diversity is to change the protected program so that
one or more of its properties, e.g., the address of code or data, is unknown
to the attacker. Since memory-corruption exploits depend on the address of
code and data, the adversary needs to correctly guess or otherwise acquire
the address of all the memory structures required for the exploit, which
substantially increases the attack’s difficulty. We present Selfrando, a scheme
which randomizes the executable code of a program with a fine granularity.
In contrast to previous works, our scheme performs the randomization every
time the application is launched. This way, the same application package
can be distributed through traditional channels to all users, but each run
has a different memory layout. Selfrando was successfully integrated in the
privacy-preserving Tor Browser and deployed in the hardened version of Tor
Browser for Linux.

The principle of Control-Flow Integrity (CFI) is to instrument indirect control
flow transfers to inspect the computed target before the control transfer is
performed. As an example of a coarse-grained CFI scheme, indirect call
instructions can be instrumented to only allow calls to the start addresses
of known functions. A variety of CFI approaches with different granularity
have been proposed. Given this variety, it is important to be able to quantify
the security guarantees of each scheme. We present CFInsight, a benchmark
for CFI security. Unlike previous works, our analysis is based on properties
of the paths between indirect call sites and system call instructions, which
attackers need to reach in order to interact with the operating system or the
file system. Our metric is based on quantitative measurements of these paths
and indicates how hard it is to construct an attack.

Memory isolation involves introducing barriers between various software
components, so that a vulnerability in one of them cannot be used to ex-
ploit a different one. Memory isolation can be implemented purely in soft-
ware or with the help of hardware extensions, e.g., Trusted Execution Environ-

ii

iv

ABSTRACT

ments (TEEs). Memory isolation is particularly beneficial for software that
is composed by a significant number of diverse components, especially if
some of them handle untrusted data. This is the case of web browsers, where
an attacker can target the Just-In-Time (JIT) compiler and force it to generate
malicious code. We present JITGuard, which leverages memory isolation
and a TEE in order to protect the internal data of a browser’s JIT compiler
from attackers. Unlike alternative approaches, our construction maintains
the existing synchronous calling semantics and does not require complex
redesigns in the original code.

Memory isolation, and TEEs in particular, can be used for a number of
purposes, including to ensure the confidentiality of a component. However,
there is a category of attacks that is particularly effective in breaking the
confidentiality property of memory isolation. These attacks leverage side
channels in order to extract information from a component without directly
interacting with it. Below, we introduce our proposals of a software-only and
a hardware-based countermeasure against these attacks.

A traditional approach to limit side-channel leakage is to manually design
alternative algorithms, which requires significant expertise and is highly
error-prone. Instead, we present DR.SGX, a software-only solution that auto-
matically protects all data used in a TEE by applying a fine-grained location
randomization. The data location is periodically re-randomized to further
limit the leakage during extended execution.

Another common approach to limit cache-based side-channel leakage is
to partition the caches, which leads to high performance overheads. Our
proposal HybCache is a new cache architecture that limits side-channel leak-
age by design. Security-sensitive code accesses a subset of the cache fully-
associatively, using a random replacement policy, which prevents any address-
specific information leakage. At the same time, security-insensitive code
accesses the cache in the traditional set-associative way, which, unlike cache
partitioning, results in no performance degradation.

Lastly, we describe two practical use cases that show how TEEs can be used
to improve protocols. First, we show VoiceGuard, a TEE-based design for a
voice recognition system that protects from disclosure both the user’s voice
data and the vendor’s machine learning model. Second, we present FastKitten,
a TEE-based protocol that allows for fast and efficient smart contract execution
on cryptocurrencies that do not support smart contracts.

ZUSAMMENFASSUNG

Die Komplexitit von Computerprogrammen nimmt seit Jahrzehnten zu. Infol-
gedessen haben auch die Anzahl und die Auswirkungen von Sicherheitsliicken
zugenommen. Memory-Corruption Angriffe sind seit Jahrzehnten eine der
schwerwiegendsten Sicherheitsbedrohungen, trotz der enormen Anstren-
gungen der Security-Community: Nach 2019 verdffentlichten Statistiken von
Microsoft sind 70% der in den letzten 10 Jahren behobenen Schwachstellen
in Sicherheitsupdates Probleme mit der Speicherintegritit. Auch in den CWE
Top 25 von 2021 stehen zwei der drei gefahrlichsten Schwachstellenkategorien
im Zusammenhang mit Speicherkorruption.

Es wurde eine Vielzahl von Ansitzen vorgeschlagen, die darauf abzielen,
entweder Schwachstellen zu entdecken, bevor sie in einer Produktionsumge-
bung eingesetzt werden, oder Schwachstellen zu verhindern, indem man sie
schwerer ausnutzbar macht. Zum ersten Fall gehoren Strategien wie statische
Analyse, Testsuiten und Fuzzing. Solche Methoden sind zwar wichtig und
vorteilhaft, allerdings ist es nicht realistisch alle Softwarefehler zu finden: Die
meisten Softwareprojekte leiden unter Memory-Corruption Schwachstellen,
insbesondere wenn sie Legacy-Code enthalten.

Daher ist es entscheidend, Schutzmalnahmen zu erforschen, zu entwi-
ckeln und einzusetzen, um das Ausnutzen solcher Schwachstellen erheblich
zu erschweren oder sogar unmoglich zu machen. Drei prominente Ansétze
dazu sind Software-Diversitit (z.B. Randomisierung), Integritidtspriifungen
(bspw. CFI) und Speicherisolierung (z.B. TEEs). Im Rahmen dieser kumula-
tiven Dissertation werden Beitrdge zu diesen drei MalRnahmen, aber auch
Anwendungen fiir praktischere Probleme, préasentiert.

Die Idee von Software-Diversitit besteht darin, das zu schiitzende Pro-
gramm so zu verandern, dass eine oder mehrere seiner Eigenschaften, z.B.
die Adresse von Code oder Daten, dem Angreifer nicht zugénglich sind. Da
Speicherkorruptionen von der Adresse des Codes oder der Daten abhingen,
muss der Angreifer alle Speicheradressen, welche fiir den Angriff erforderlich
sind, entweder erraten oder auf andere Weise in Erfahrung bringen. Dies er-
hoht die Schwierigkeit des Angriffs erheblich. Mit Selfrando stellen wir einen
Ansatz vor, welcher den ausfiihrbaren Code eines Programms feingranular
randomisiert. Im Gegensatz zu fritheren Vero6ffentlichungen, fiihrt unser
Ansatz die Randomisierung jedes Mal durch, wenn die Software gestartet
wird. Auf diese Weise kann das gleiche Programmpaket iiber herkommliche
Kanile an alle Benutzer verteilt werden, aber jede Ausfiihrung bekommt
ein anderes Speicherlayout. Selfrando wurde erfolgreich in den privaten Tor-
Browser integriert und mit der gehérteten Version des Tor-Browsers flir Linux
ausgerollt.

Das Prinzip von Control-Flow Integrity (CFI) besteht darin, indirekte Kon-
trollflusstransfers zu instrumentieren, um das berechnete Ziel zu priifen
bevor der Kontrollflusstransfer durchgefiihrt wird. Als Beispiel fiir einen gro-
ben CFI-Ansatz konnen indirekte Call-Instruktionen instrumentiert werden,
um nur Aufrufe an die Startadressen bekannter Funktionen zu erlauben. Es
wurde eine Vielzahl von CFI-Ansétzen mit unterschiedlicher Granularitit vor-
geschlagen. Angesichts dieser Vielfalt ist es wichtig, die Sicherheitsgarantien
der einzelnen Verfahren quantifizieren zu konnen. Dazu stellen wir CFInsight
vor, ein Benchmark fiir CFI-Sicherheit. Im Gegensatz zu vorherigen Ansétzen
basiert unsere Analyse auf den Eigenschaften der Pfade zwischen indirekten
Call-Instruktionen und System-Calls, die Angreifer erreichen miissen, um mit
dem Betriebssystem oder dem Dateisystem zu interagieren. Unsere Metrik

vi

ZUSAMMENFASSUNG

basiert auf quantitativen Messungen dieser Pfade und gibt an, wie schwer es
ist, einen Angriff zu konstruieren.

Bei der Speicherisolierung werden Barrieren zwischen verschiedenen Soft-
warekomponenten eingesetzt, so dass eine Schwachstelle in einer dieser
Komponenten nicht zur Ausnutzung einer anderen genutzt werden kann.
Die Speicherisolierung kann ausschliefSlich in Software, oder mit Hilfe von
Hardware-Erweiterungen, z.B. Trusted Execution Environments (TEESs), reali-
siert werden. Speicherisolierung ist besonders vorteilhaft fiir Software, die
aus einer betriachtlichen Anzahl verschiedener Komponenten besteht, ins-
besondere wenn einige dieser Komponenten ungepriifte Daten verarbeiten.
Dies ist bei Webbrowsern der Fall, bei denen ein Angreifer den Just-In-Time-
Compiler (JIT) angreift und ihn zwingen kann, bosartigen Code zu erzeugen.
Daher stellen wir JITGuard vor, welches Speicherisolierung und ein TEE nutzt,
um die internen Daten des JIT-Compilers eines Browsers vor Angreifern zu
schiitzen. Im Gegensatz zu alternativen Ansétzen behélt unsere Konstruktion
die bestehende synchrone Aufrufsemantik bei und erfordert keine komplexen
Abénderungen im urspriinglichen Code.

Speicherisolierung und insbesondere TEEs konnen fiir eine Reihe von wei-
teren Zwecken eingesetzt werden, unter anderem um die Vertraulichkeit
einer Komponente zu gewéhrleisten. Es gibt jedoch eine Kategorie von Angrif-
fen, mit denen die Vertraulichkeit der Speicherisolierung besonders effektiv
gebrochen werden kann. Diese Angriffe nutzen Seitenkanile aus, um Infor-
mationen aus einer Komponente zu extrahieren, ohne direkt mit dieser zu
interagieren. Im Folgenden stellen wir unsere Vorschlége fiir rein software-
und hardwarebasierte GegenmalRnahmen gegen diese Angriffe vor.

Ein traditioneller Ansatz zur Einschriankung von Seitenkanal-Lecks be-
steht in der manuellen Entwicklung alternativer Algorithmen, was erhebliche
Fachkenntnisse erfordert und hochst fehleranfillig ist. Stattdessen stellen
wir DR.SGX vor, eine reine Softwarelosung, die automatisch alle in einem
TEE verwendeten Daten durch eine feingranulare Randomisierung des Spei-
cherlayouts schiitzt. Das Speicherlayout der Daten wird in regelméRigen Ab-
stinden neu randomisiert, um das Datenleck wiahrend ldngerer Laufzeiten
weiter zu begrenzen.

Ein anderer gingiger Ansatz zur Begrenzung von Cache-basierten
Seitenkanal-Lecks ist die Partitionierung der Caches, was zu einer
reduzierten Leistung fiihrt. Bei unserem Projekt HybCache handelt es sich
um eine neue Cache-Architektur, welche gezielt Seitenkanal-Lecks begrenzt.
Dabei greift der sicherheitskritische Code auf eine Teilmenge des Cache
vollstiandig assoziativ zu, wobei eine zufillige Replacement-Policy verwendet
wird, die ein adressenspezifisches Informationsleck verhindert. Gleichzeitig
greift unkritischer Code auf traditionelle Weise auf den Cache zu, was im
Gegensatz zur Cache-Partitionierung keine Leistungseinbuflen zur Folge hat.

AbschlieRend beschreiben wir zwei praktische Anwendungsfille, die zei-
gen, wie TEEs zur Verbesserung von Protokollen eingesetzt werden konnen.
Zunichst prasentieren wir VoiceGuard, ein TEE-basiertes Design fiir ein Spra-
cherkennungssystem, das sowohl die Sprachdaten des Benutzers als auch das
maschinelle Lernmodell des Anbieters vor der Offenlegung schiitzt. Zweitens
stellen wir FastKitten vor, ein TEE-basiertes Protokoll, das eine schnelle und
effiziente Ausfiihrung von Smart Contracts in Kryptowahrungen erméglicht,
welche keine Smart Contracts unterstiitzen.

CONTENTS

Abstract iii
Zusammenfassung v
Contents vii

SYNOPSIS
INTRODUCTION 1
1.1 Software Diversity 2
1.2 Control-Flow Integrity 3
1.3 Memory Isolation and TEEs 3
1.4 Side-Channel Attacks and Defenses 4
1.5 Improving Protocols with TEEs 5
1.6 Summary of My Contributions 6
MEMORY-CORRUPTION ATTACK MITIGATIONS 7
2.1 Software Diversity 7
2.1.1 Our Contribution 7
2.1.2 Related Work 8
2.2 Memory Isolation 9
2.2.1 Our Contribution 9
2.2.2 Related Work 10
2.3 Control-Flow Integrity 11
2.3.1 Our Contribution 12
2.3.2 Related Work 13
SIDE-CHANNEL ATTACK MITIGATIONS 15
3.1 Software-Only Side-Channel Mitigations 15
3.1.1 Our Contribution 15
3.1.2 Related Work 16
3.2 Hardware-Assisted Side-Channel Mitigations 17
3.2.1 Our Contribution 18
3.2.2 Related Work 18
TEE APPLICATIONS 21
4.1 Automated Speech Recognition 21
4.1.1 Our Contribution 21
4.2 Efficient Smart Contracts on Legacy Blockchains 22
4.2.1 Our Contribution 22
4.3 Related Work 22
CONCLUSION AND OUTLOOK 25
5.1 Future Directions 26

Bibliography 27
List of Acronyms 37
Erklirung gemils §9 der Promotionsordnung 39

II

A

PUBLICATIONS PART OF THIS CUMULATIVE DISSERTATION
Summary 43

SELFRANDO: Securing the Tor Browser Against De-anonymization
Exploits (PETS 2016) 45

JITGUARD: Hardening Just-in-time Compilers with SGX (ACM CCS
2017) 61

VOICEGUARD: Secure and Private Speech Processing (Interspeech
2018) 77

DR.SGX: Automated and Adjustable Side-Channel Protection for
SGX using Data Location Randomization (ACSAC 2019) 83

vii

viii CONTENTS

E FASTKITTEN: Practical Smart Contracts on Bitcoin (USENIX Secu-
rity 2019) 97

F HYBCACHE: Hybrid Side-Channel-Resilient Caches for Trusted Ex-
ecution Environments (USENIX Security 2020) 115

G CFINSIGHT: A Comprehensive Metric for CFI Policies (NDSS
2022) 133

Partl

SYNOPSIS

[

N

w

INTRODUCTION

In recent decades, computer systems evolved from rare and specialized equip-
ment used by technicians to omnipresent devices deployed in every branch of
human activities — including for industrial, financial and military purposes.
The complexity of both the hardware used in these systems and the programs
that run on them increased dramatically, leading to a similar growth in vul-
nerabilities'. At the same time, adversaries have an increasing number of
attack classes at their disposal to help them achieve their goals.

One of the most effective ways to exploit a system is to leverage so-called
memory-corruption vulnerabilities?, which allow the attacker to access the
memory of a running program in an unintended way. Despite the tremendous
amount of effort by the research community, this type of vulnerability is still
very dangerous?®.

Memory-corruption vulnerabilities are especially common in languages
like C and C++ because these languages require the programmer to manually
manage memory allocations, which leads to the possibility of programming
mistakes. As an example, the most straightforward example of a memory-
corruption attack is to leverage a buffer overflow: when copying data from a
buffer to another, a missing or faulty check on the length of the data being
copied allows the attacker to overwrite memory locations after the end of the
buffer. This can change the value of variables in memory and even change
the control flow by overwriting a code pointer. More advanced attacks also
leverage other vulnerabilities, e.g., use after free. In Figure 1 we show a number
of software and hardware components that are relevant to the attacks and
mitigations we consider. As an example, Application A has a vulnerable
buffer @ that can be used to attack a particular target @.

Researchers have proposed a number of approaches to mitigate memory-
corruption vulnerabilities. The ideal solution would be to find all the vulner-
abilities and patch them, which would clearly eradicate the problem. Bug-
finding strategies, including static analysis, test suites, and fuzzing, can and
should be used to find and correct software vulnerabilities. However, finding
all bugs is not feasible in practice due to the complexity of modern software.
Hence, it is crucial to investigate, develop, and deploy mitigations, in order to
make exploitation of these vulnerabilities substantially harder or even unfea-
sible. Three prominent approaches are software diversity (e.g., randomization),
integrity checks (e.g., CFI), and memory isolation (e.g., TEEs). Each of these
techniques has advantages and shortcomings regarding their effectiveness
and efficiency.

In this dissertation we consider a number of attacks against a complex pro-
gram, and propose and evaluate mitigation strategies against them based on
these three approaches. We will now briefly explain each of these techniques
and summarize our contributions to the state of the art.

As an example, in the year 2000 just over 1000 vulnerabilities were discovered and publicly
disclosed. In 2021 the same figure grew to over 20 000 [149].

In 2019, Microsoft showed that 70% of the vulnerabilities addressed by their security updates
over the previous decade are memory-safety issues [138].

According to the 2021 CWE Top 25 [147] — a list of the vulnerability classes connected with the
highest number of the CVE vulnerabilities over the previous two years — three of the top seven
vulnerabilities are instances of memory-corruption attacks. Namely, number 1 is Out-of-bounds
Write, number 3 is Out-of-bounds Read, and number 7 is Use After Free.

INTRODUCTION

Application A Application B Application C
<G oa) &
Buffer 5 5 5
Sl E|E||E TEE
2152
Target g g g Sensitive
—) o &) Component
)
’ Operating System
Hardware
Coreo Core1

. Shared
Cache Cache Cache RAM

Figure 1: Complex applications running on a modern processor.

1.1 SOFTWARE DIVERSITY

A software diversity defense approach consists in producing multiple versions
of the same program. All versions share the same exact logic, but their im-
plementations are different, and the adversary does not know the specific
version the victim uses. Assuming that each version requires a custom exploit,
i.e., that no generic attack exists, the exploit only succeeds if the adversary
picks the correct attack for the specific version, which is very unlikely if a
sufficiently large number of versions exist. A concrete way to implement
this idea is to randomize the memory layout of the program, i.e., change the
order of the different blocks of code that compose the program. In the case
of Application A in Figure 1, the use of randomization would mean that the
adversary would not know where the target @ is. This would make the attack
unfeasible, unless the adversary is able to disclose the location of the target.

Although randomization is a well-known technique, previous approaches
suffer from a number of downsides: either they are very coarse-grained, and
hence, easier to bypass, or they are performed at compile time, such that a
user’s version of the program does not change with time.

SELFRANDO Our contribution Selfrando [1, Appendix A] lifts both of those
restrictions, delivering a fine-grained randomization scheme that is per-
formed on the user’s device every time the protected application is started.
As a result, Selfrando provides substantially higher entropy than ASLR, while
remaining compatible with conventional software build and distribution
pipelines (unlike compile-time randomization approaches [65]). As a result
of this practicality, we successfully integrated Selfrando with Tor Browser, a
privacy-preserving Web browser. Selfrando was also included in the hardened
version of Tor Browser for Linux [67].

1.2 CONTROL-FLOW INTEGRITY

1.2 CONTROL-FLOW INTEGRITY

Another approach to mitigate memory-corruption vulnerabilities is to make
sure each code fragment can only call a function if the programmer intended
the fragment to be able to call that function. This is called Control-Flow In-
tegrity (CFI) [24]. As a result, the adversary is unable to change the control
flow and force the application to perform malicious actions. If CFI is deployed
in Application A in Figure 1, overwriting a code pointer would still be possible,
but the malicious pointer would be rejected at run time and execution would
be interrupted.

It is important to note that CFI by design does not detect data-only attacks,
which only change a program’s data without introducing detectable deviations
to the control flow. The two other approaches we consider, randomization
(Section 1.1) and memory isolation (Section 1.3) can be effective against data-
only attacks. An extension of CFI, Data-Flow Integrity (DFI) [27], can also
detect data-only attacks. However, DFI imposes high overheads and is less
commonly used, so here we focus on CFI.

Since the original introduction of CFI [24], more than a decade ago, a signif-
icant amount of research was devoted to proposing new schemes. However,
there was not a similar amount of research on metrics to evaluate CFI schemes:
most evaluation metrics, like AIR [52], are too simplistic and, as a result, they
are unfit to properly describe the relative security guarantees of different CFI
schemes.

CFINSIGHT With CFInsight [7, Appendix G], we introduce a new metric
that is based on numeric properties of the program’s Control-Flow Graph (CFG).
Our metric is based on the observation that the attacker needs a system call
invocation in order to access files or interact with the rest of the system. Hence,
we base our metric on numeric properties of the paths leading to system call
invocations. Moreover, we also introduce a new CFI policy generator that
offers security guarantees similar to existing policy generators, and even
better security when combined with existing generators.

1.3 MEMORY ISOLATION AND TRUSTED EXECUTION ENVIRONMENTS

A third approach to mitigate memory corruption is to isolate the various
components of an application such that a vulnerability in a component cannot
be leveraged to exploit a different component. Intuitively, memory isolation
cannot prevent attacks within a component, but it is a useful technique to
reduce the attack surface, especially when multiple untrusted components
collaborate in a complex application.

A widely-deployed memory-isolation technique is protected memory: as an
example, in Figure 1, Application A cannot access memory belonging to Appli-
cation B. The same principle can be applied to isolate every logical component
of the application. Application B in Figure 1 is divided into compartments €
such that a vulnerability in one of them cannot be used to attack another.
Software Fault Isolation is an implementation of this idea in software [21, 28,
33].

However, the idea of protecting a sensitive component from others has also
been implemented with the assistance of hardware extensions, namely in
Trusted Execution Environments (TEEs). TEEs are designed to be effective even
against a malicious operating system, which is a very powerful adversary.
Application C in Figure 1 protects a sensitive component @ in a hardware-
supported TEE.

Widespread TEEs include TrustZone (TZ) by ARM [59], Software Guard Exten-
sions (SGX) by Intel [85], and Secure Encrypted Virtualization (SEV) by AMD [96].

INTRODUCTION

While they differ on a number of details, the purpose of all TEEs is to ensure
the confidentiality and integrity of a software component, protecting it from
unauthorized access from any other component.

Memory isolation is particularly beneficial for software that is composed
of a significant number of diverse components, especially if some of them
handle untrusted data.

JITGUARD In JITGuard, we leverage a TEE to isolate a component of a web
browser. Web browsers are very complex, even when compared with other
modern applications. Due to this complexity and to the fact that they have
to handle untrusted data and code, browser vulnerabilities are discovered
on a regular basis. Additionally, browsers handle personal data, authentica-
tion credentials, and payment details, so they are very enticing targets for
adversaries. A component that is particularly valuable for the attacker is the
Just-In-Time (JIT) compiler, since it is able to generate new executable code.
If the attacker is able to control the JIT compiler, the attacker can force it to
emit malicious executable code directly into the browser process, as demon-
strated by the data-only attack DOJITA [2, Appendix B]. With JITGuard [2,
Appendix B], we leverage Intel SGX to isolate the JIT compiler from the other
components and prevent any corruption of the compiler’s internal data.

Memory isolation, and TEEs in particular, can be used for a number of pur-
poses, including to ensure the confidentiality of a component. However, there
is a category of attacks that is particularly effective in breaking the confiden-
tiality property of memory isolation. These attacks leverage side channels in
order to extract information from a component without directly interacting
with it. Next, we examine these attacks and propose countermeasures.

1.4 SIDE-CHANNEL ATTACKS AND DEFENSES

Side-channel attacks represent a very stealthy threat. They manage to disclose
information from a process without interacting with it directly: they monitor
so-called side channels, i.e., unintended consequences of the execution of a
program, in order to infer parts of the internal state of the victim. As an
example, an adversary can leverage side channels against a cryptographic
algorithm in order to extract a secret key.

The most common side channel happens through processor caches. While
a program runs, it accesses its data, which is stored in the main memory,
or RAM (@ in Figure 1). In order to make future accesses faster, the data is
stored in shared caches @ and core-private caches @. A malicious process
running concurrently to the victim process can probe these caches and collect
information through the side-channel leakage.

While side-channel attacks can be performed in a number of different
settings, they are particularly effective against TEEs [89, 98]. Intel SGX in
particular does not address side channels by design; instead, it is up to each
protected component, called enclave in SGX parlance, to limit side-channel
leakage.

While it is possible to use leakage-resistant and constant-time programming
techniques, they require substantial manual effort from security experts.
Hence, we propose both a software-only and a hardware-assisted technique
to mitigate cache side-channel leakage without the need for manual effort.

DR.SGX With DR.SGX [4, Appendix D], we aim at mitigating the most di-
rect source of cache-based side-channel leakage, i.e., the effects on cache
produced by data accesses. DR.SGX introduces a software-only data permu-
tation scheme, such that all data inside the enclave is periodically relocated

1.5 IMPROVING PROTOCOLS WITH TEES

to a randomized location. As a result, the adversary does not know where
the data is in the enclave; correlating cache-based side-channel signal with
secret accesses performed by the enclave becomes much harder. Thanks to
an efficient permutation scheme based on small-domain encryption, we can
efficiently store the permutation inside the enclave without the need for a
large table.

The root cause of cache-based side channels is shared caches. An expensive
solution, albeit effective, is to partition the caches, so that they become virtu-
ally private. However, this quickly becomes impractical, especially if multiple
mutually-untrusted enclaves are to run concurrently.

HYBCACHE HybCache [6, Appendix F] addresses the leakage problem in
a different way: instead of partitioning the cache between trust domains,
it enables mutually-untrusted domains to access a subset of the cache in
a fully-associative fashion instead of set-associatively. With ordinary set-
associative caches, if the adversary notices that a cache line has been evicted,
the attacker gains information about which line the victim accessed. With a
fully-associative access scheme, the adversary gains no information besides
the fact that the victim accessed a cache line. Moreover, HybCache allows
security-insensitive programs, executing outside of an enclave, to access the
cache in the usual set-associative way, without any performance overhead.

In addition to proposing novel ways to mitigate side-channel leakage, we also
set out to leverage TEEs in order to improve the performance and privacy of
a number of distributed computation protocols.

1.5 IMPROVING PROTOCOLS WITH TEES

Ensuring trust and privacy in a distributed protocol without resorting to
a trusted third party is challenging. As an example, this is the case with
private execution of smart contracts over a cryptocurrency’s blockchain. A
general solution to this problem is Secure Multi-Party Computation (MPC),
which comprises a number of cryptographic techniques that allow mutually
distrusting parties to perform a computation without disclosing the inputs
and the intermediate results to any of the parties. However, MPC techniques
are very expensive in terms of computation time, network overhead, and
financial burdens.

TEEs can be leveraged to implement similar protocols while greatly reduc-
ing the amount of cryptography required, since TEEs are designed to protect
the confidentiality of data*. The introduction of a mutually trusted party in the
form of a TEE allows the computation to be performed in a straightforward
manner.

Similarly, the deployment of a TEE can introduce privacy guarantees in the
domain of voice recognition, where most users have no choice but to trust the
vendor not to abuse the data it collects. Below we describe our contributions
in both of these domains.

FASTKITTEN The advent of cryptocurrencies gave birth to the idea of a
smart contract, i.e., a secure and trustworthy way to run code according to
a specified set of inputs in response to a certain condition. The most well-
known smart contract platform is part of the cryptocurrency Ethereum. While
Ethereum made smart contracts accessible to a large community, it does not

As we discussed in Section 1.4, most industry implementations of the TEE concept can be attacked
using side-channel attacks; we also discuss our proposals to mitigate the possibility of these
attacks. In this Section, we consider an idealized TEE that can withstand such attacks.

INTRODUCTION

offer good support for code that is complex or that requires confidentiality of
data. This is because Ethereum requires a large number of nodes to run the
code of every contract every time it is executed. Moreover, it does not provide
means to keep data private without complex and expensive cryptography.
FastKitten [5, Appendix E] leverages a TEE to execute the smart contract in
a protected environment and introduces a protocol that ensures that the
participants and the TEE operator are treated fairly.

VOICEGUARD Voice recognition software is challenging to deploy in a
privacy-preserving way. The main issue is that voice recognition needs both
a voice recording and a machine learning model: the former belongs to the
user and should ideally not be disclosed to the vendor, while the latter belongs
to the vendor and should not be disclosed to competitors. The most common
solution is to run the recognition software on the vendor’s servers, leaving the
users no choice besides simply trusting the vendor to respect their privacy.
With VoiceGuard [3, Appendix C], we design a protocol that leverages a TEE
running on the vendor’s server to protect the confidentiality of the voice
recording during the recognition process on the vendor’s servers.

1.6 SUMMARY OF MY CONTRIBUTIONS

Like most academic works, the publications presented in this dissertation
would not have been possible without the collaboration and support of my
co-authors. Below I detail my contributions for each paper.

For Selfrando [1, Appendix A], the design was a collaboration between
Christopher Liebchen, Andrei Homescu, Per Larsen, and me. [was the main
author of the implementation, starting from existing code for a different
project. I also performed the integration of the code within the Tor build
architecture and the performance evaluation. This paper was developed in
parallel with my master thesis [8]. While the thesis focuses on randomization
and contains more technical details, the paper focuses more on defending
against de-anonymization attacks on the Tor Browser and contains a new
security analysis.

For JITGuard [2, Appendix B], I was the lead author of the design of the
defense, in collaboration with Christopher Liebchen. I implemented most
of the defense (except a component written by David Gens) and performed
the evaluation. Christopher Liebchen developed and implemented the attack
DOJITA.

In VoiceGuard [3, Appendix C], Ferdinand Brasser led the design with the col-
laboration of all authors. I contributed the proof-of-concept implementation
and its evaluation, with the assistance of Korbinian Riedhammer regarding
voice recognition systems.

For DR.SGX [4, Appendix D], the idea was developed jointly by Ferdinand
Brasser, Alexandra Dmitrienko, Kari Kostiainen, and me, while I led the tech-
nical design. I also implemented the system and performed the evaluation.

For FastKitten [5, Appendix E], the idea is the fruit of the collaboration of
all authors. Lisa Eckey and Kristina Hostakova designed the protocol and its
security proofs. I led the implementation and performance evaluation of the
prototype.

For HybCache [6, Appendix F] I contributed to the design discussions with
Ghada Dessouky. I also performed the performance evaluation using an
architectural simulator I implemented starting from preliminary work of a
bachelor student.

Lastly, for CFInsight [7, Appendix G] I led the whole project, including
design, implementation and evaluation, with important feedback from Patrick
Jauernig and David Koisser.

MEMORY-CORRUPTION ATTACK MITIGATIONS

As mentioned in Chapter 1, memory corruption vulnerabilities allow the ad-
versary to access memory in a way that was not intended by the programmer.
Such vulnerabilities are particularly common in legacy programs written in
memory-unsafe languages. These languages, including C and C++, require
the programmer to manage memory manually, which is error-prone. As an
example, when iterating over an array in C, there is no built-in construct that
constrains memory accesses only to the array. Hence, if the programmer ne-
glects to put some form of boundary check in place, this unconstrained mem-
ory access can be leveraged by the attacker to mount a memory-corruption
attack. The goals of the adversary usually include reading and exfiltrating
some information, overwriting some of the program’s data, or completely
hijacking the program to perform arbitrary computation.

The simplest way to achieve arbitrary computation with a memory-corrup-
tion attack is through a code-injection attack, in which the adversary simply
injects some new code in memory and then redirects the control flow to
the new code. To counter such attacks, a new defense was widely deployed,
named W®X, which enforces the property that any memory page can either
be writable or executable, but not both; hence, the adversary cannot inject
any external code into executable memory.

As a result of the impossibility of directly injecting new code, adversaries
started resorting to code-reuse attacks, which aim to use existing code in an
unintended way to mount an attack of their choosing. Code reuse can be
performed at various levels: the adversary can simply redirect execution
to an existing function (e.g., in a return-to-libc attack), or can assemble the
desired functionality using a number of very short code sequences (e.g., in a
Return-Oriented Programming (ROP) [29] attack).

As we mention in Chapter 1, there are various approaches to limit the
effectiveness of these attacks, including software diversity, memory isolation,
and integrity checks. We discuss them in the following Sections.

2.1 SOFTWARE DIVERSITY

The core principle of software-diversity approaches is that, in order to transfer
control to the building blocks of a code-reuse attack, the adversary needs to
know the address in memory of each of these building blocks. Hence, the idea
is to prevent the adversary from learning the address of any specific piece of
code in the victim process.

2.1.1 Our Contribution
In the following paper:

[1] M. CONTI, S. CRANE, T. FRASSETTO, A. HOMESCU, G. KOPPEN, P. LARSEN, C.
LIEBCHEN, M. PERRY, and A.-R. SADEGHI. “Selfrando: Securing the Tor Browser
Against De-anonymization Exploits.” In: Privacy Enhancing Technologies Sympo-
sium. 2016. CORE2021 rank: A, CORE2014 rank: B. Included in Appendix A on
Page 45.

we present a load-time code randomization tool, Selfrando. Our tool acts at
load time, i.e., after the protected application is loaded from disk but before

MEMORY-CORRUPTION ATTACK MITIGATIONS

it starts executing. Selfrando randomly permutes the order of functions in
memory: after the permutation, the application’s code as a whole is still in
the same memory region, but the order of functions is different at every run.
Since the permutation only happens at load time, it has a minimal impact on
run-time performance (less than 1% on SPEC CPU2006 benchmarks).

Our tool is completely self-contained, so it can run in a standard environ-
ment. It does not depend on a custom compiler, so it can be integrated in an
existing build setup. It can also scale up to very complex codebases, including
a web browser. As a result, we successfully collaborated with members of the
Tor Project to prove the compatibility of Selfrando with their anonymous web
browser, Tor Browser. Selfrando was also included in the hardened version
of Tor Browser for Linux [67].

2.1.2 Related Work

ASLR The most widespread software-diversity approach is Address Space
Layout Randomization (ASLR), which is nowadays commonly deployed on
most commodity operating systems. It was first introduced in 2003 by the
PaX Team [23] and it consists of shifting a number of memory areas, e.g.,
executable code, stack, heap, and libraries, by a random offset. ASLR was a
very important first step against memory-corruption exploits, since it made
code-reuse attacks harder and had very little performance overhead. However,
ASLR has significant limitations. First, it suffers from low entropy on certain
platforms (e.g., only 9 bits on 32-bit Linux [1, Appendix A]); Selfrando offers
higher entropy. Second, if the attacker can disclose a pointer into a memory
area (e.g., the executable code), the attacker can compute the address of any
other portion of that memory area using trivial arithmetic. Since Selfrando
shuffles memory on a function granularity, any pointer the adversary manages
to leak only gives information about that function, but it does not give any
information about the location of the other functions. Hence, the amount
of information that can be gained from a pointer leak is substantially more
limited.

FINE-GRAINED RANDOMIZATION Over the years, a number of works
concentrated on the problem of constructing a randomization scheme which
is more fine-grained than ASLR.

Bhatkar et al. [26] propose a randomization scheme based on a source-
to-source transformation of C code. However, it suffers from a significant
overhead of 11% and only supports C.

ILR by Hiser et al. [38] is based on a virtual machine that interprets custom
binaries that use randomized instruction encodings. However, it suffers from
an even more significant overhead of 15% and it is not compatible with JIT-
compiled code, which is used, e.g., in web browsers to speed up execution of
JavaScript programs.

Giuffrida et al. [36] propose a compiler-based approach that periodically
re-randomizes the code. The downside of this approach is that it requires a
custom compiler and build infrastructure to be deployed on the end user’s
machine, which would hamper adoption by non-technical users.

Binary stirring by Wartell et al. [40] is a binary-only approach that random-
izes programs at install time, without needing the source code. Unfortunately,
binary-only approaches require disassembling the binary, which is an imper-
fect process. As a result, this tool requires a run-time component to handle
disassembly mistakes. It also relies on a commercial disassembler, which
would severely complicate a real-world deployment.

Marlin by Gupta et al. [44] is a more lightweight binary-only approach;
however, it can only handle simple binaries that disassemble without errors.

2.2 MEMORY ISOLATION

XIFER by Davi et al. [43] is a binary-only load-time randomization tool. Its
downside is that it takes more than one second to randomize one megabyte
of code: as a result, processing a modern web browser would take multiple
minutes. Since processing takes place at load time, i.e., while the user is
waiting for the application to start, this solution is not practical for complex
software of this size.

Priyadarshan et al. [146] is another recently-proposed binary-only approach.
They achieve a run time overhead of only 2.26%. However, this is still sub-
stantially higher than Selfrando’s overhead.

Koo et al. [128] propose a hybrid approach, which leverages rich information
gathered at compile time and performs randomization at load time. It has an
overhead which is comparable to Selfrando; however, it requires a client-side
component, which limits the ability to deploy it in practice without support
from the operating system vendor.

LIMITATIONS OF RANDOMIZATION Snow et al. [49] show that, if the
attacker has access to an arbitrary read vulnerability, randomized code can
be simply read and disassembled by the attacker, who can then assemble a
custom exploit. This is possible regardless of the randomization granularity.
Moreover, Bittau et al. [54] showed that the read vulnerability is not even
necessary in some cases, if the adversary can observe whether the program
crashed or not when trying a specific input. As a result, a number of research
works [53, 63, 64, 79] have explored execute-only memory, which aims to pre-
vent memory-disclosure attacks in the first place. Recent hardware features
also enable efficient execute-only memory [61]. These execute-only memory
solutions still require a code randomization tool like Selfrando to randomize
the binary while they protect against memory-disclosure attacks.

2.2 MEMORY ISOLATION

The second approach we examine against memory-corruption attacks is mem-
ory isolation, which consists of introducing hardware or software barriers
between different components such that a vulnerability in one component
cannot be used to access a different component. Memory isolation can be
applied in a number of ways.

In the sandbox model, a component which is subject to higher risk of com-
promise, e.g., because it processes untrusted data, is denied access to the rest
of the system, except for well-defined interfaces, with the aim of containing a
possible compromise inside the component.

Conversely, in the enclave model, a component that is particularly interest-
ing for the attacker to compromise, e.g., because it contains sensitive data
or encryption keys, is protected from the rest of the system such that other
components can only access it through well-defined interfaces.

Below we show how we can apply the latter model to protect a sensitive
component of a web browser.

2.2.1 Our Contribution

As we mentioned, modern web browsers are very complex and are com-
posed of a high number of components. Web applications are also increasing
in size and complexity. In order to run these applications with acceptable
performance, web browsers adopt a number of techniques, including Just-
In-Time (JIT) compilation of JavaScript code. With this technique, a browser
automatically identifies JavaScript functions that are executed often and com-
piles them into native code, which can be directly executed by the hardware

10

MEMORY-CORRUPTION ATTACK MITIGATIONS

without the need for a JavaScript interpreter. After a small initial performance
penalty due to the compilation, execution speed of native code is significantly
faster than a traditional interpreter.

However, this process introduces the possibility of inserting additional
code into executable memory. If the adversary can read and write arbitrary
memory through a vulnerability, it is possible to hijack the JIT compilation
process and produce malicious executable code, which the adversary can
later call [2, Appendix B].

In the following paper:

[2] T.FRASSETTO, D. GENS, C. LIEBCHEN, and A.-R. SADEGHI. “JITGuard: Hard-
ening Just-in-time Compilers with SGX.” in: ACM Conference on Computer and
Communications Security (CCS). 2017. CORE2021 rank: Ax. Included in Appendix B
on Page 61.

we introduce JITGuard, a memory-isolation defense that protects the integrity
of the JIT compilation process.

JITGuard protects the JIT compiler inside an Intel SGX enclave, making it im-
possible for the attacker to interfere with its data. However, the JIT-compiled
code exists outside of the SGX enclave, in order to allow fast switches to and
from static code. Moreover, JITGuard protects JIT-compiled code from code-
injection and code-reuse attacks by leveraging a data hiding scheme. The
location of the JIT-compiled code is protected by trampolines and data scrub-
bing, while efficient code updates are allowed through a second memory
mapping, which is writable and randomized. Our proof-of-concept imple-
mentation protects Firefox’s JavaScript engine and shows an overhead of
9.8%.

2.2.2 Related Work

CODE-INJECTION ATTACKS AND DEFENSES FOR JIT COMPILERS]JIT
compilers change the JIT-compiled code often, e.g., to add a new function,
to optimize existing code, or to remove code that is no longer needed. As
a result, memory permissions of memory pages containing JIT code were
traditionally set to RWX, i.e., both execution and modification were enabled
at the same time. While convenient, this setup is a violation of the W®X policy.
An attacker could simply inject new code and run it [83].

JIT compilers that respect the W®X policy have been proposed in the aca-
demic world [35, 42] and a similar approach has been deployed in commercial
browsers as well [70].

However, these schemes require switching the memory from executable
to writable when the code needs to be modified. This brief window when
the code is writable can still be exploited, as shown by Song et al. [76]. As
a mitigation, they propose to move the compiler to a separate process, so
that the executable memory is never writable in the main browser process.
While effective, this defense requires a tremendous amount of Inter-Process
Communication (IPC), leading to overheads as high as 50%. A similar approach
has been deployed in Microsoft Edge [84, 111]. A downside of this effort is that
it breaks the synchronous call semantics of existing JIT-enabled JavaScript
engines, since code modification relies on asynchronous IPC instead. As a
result, adapting a JIT compiler to this model is a “non-trivial engineering
task" [111].

In contrast to the separate-process approach, interactions with the SGX
enclave used in JITGuard preserve conventional synchronous call semantics,
leading to an easier adaptation task.

-

2.3 CONTROL-FLOW INTEGRITY

CODE-REUSE ATTACKS AND DEFENSES FOR JIT COMPILERS Even if
the adversary is successfully prevented from injecting new code, the adver-
sary still has another opportunity to influence JIT-compiled code: by forcing
the compiler to emit malicious code fragments, e.g., by embedding it into
constants [31]. For more details about these attacks, we refer the reader to
the SoK paper by Gawlik et al. [123].

A possible defense approach is to monitor system calls originating from
JIT-compiled code and reject them [32]; however, this only works if benign
JIT-compiled code never contains system calls, and does not protect against
code-reuse attacks that do not directly invoke system calls.

A different approach is constant blinding [31], which consists of storing
constants xor-ed against a random value, so that attacker-controlled constants
only exist in registers but not in memory. However, for performance reasons,
this approach is usually not applied to small constants [109], which can be
still exploited by the adversary [60].

Yet another defense technique is to apply code randomization to
JIT-compiled code [45]; however, code randomization is vulnerable to
memory disclosure attacks, as we discuss in more detail in Section 2.1.2.

Control-Flow Integrity (CFI) can be leveraged too [57], with an overhead
of 14%. This approach does not detect attacks that do not deviate from the
expected Control-Flow Graph (CFG), e.g., data-only attacks.

Software Fault Isolation (SFI) can be applied to JIT-compiled code as well;
however, this can lead to overheads greater than 20% [34].

Lastly, NoJITsu by Park et al. [145] builds on the JITGuard design to construct
an even more comprehensive defense that protects the JavaScript interpreter
as well as the JIT compiler. However, this defense leverages and requires
Intel’s Memory Protection Keys (MPK) hardware extension. MPK was not avail-
able at the time JITGuard was designed and is still only available on a limited
number of processor models. JITGuard builds on SGX instead, which is widely
available on recent Intel processors.

IMPACT OF SGX DATA LEAKAGE ATTACKS As we explain in more details
in Section 3.1.2, a number of side-channel data-leakage attacks have been
demonstrated against SGX. However, most of these attacks undermine the
confidentiality of SGX, not its integrity.! In JITGuard, the adversary needs to
alter the internal data of the compiler, but gains no advantage by simply know-
ing it. The only exception is the location of the secret randomized memory
region; however, it would be challenging for the attacker to leak it, since our
adversary has no access to cache-related and other low-level instructions
(unlike the standard SGX threat model, where the host application and the
operating system may be under control of the adversary).

2.3 CONTROL-FLOW INTEGRITY

The core idea of Control-Flow Integrity (CFI) is to make sure function call sites
can only call intended call targets, while unintended calls are blocked. This
way, the program’s control flow is not compromised by the adversary, i.e., its
integrity is preserved.

A CFI scheme requires various components. The enforcement component
has the responsibility of deciding whether or not to block a particular call at
run time, based on a CFI policy. The CFI policy, produced by a policy genera-
tor, describes which calls are allowed and which are not, based on different
criteria.

Some attacks have been proposed that introduce faults in SGX enclaves [19, 143], thus undermin-
ing the integrity of the enclave. However, making the JIT compiler malfunction (and probably
crash) does not give our adversary any advantage.

11

12

MEMORY-CORRUPTION ATTACK MITIGATIONS

CFI policies can be defined at various levels of granularity. As an example, a
simple coarse-grained CFI policy is to allow every call site to call any function.
While simple, this policy already blocks any call into the middle of a func-
tion, hence severely complicating ROP attacks. However, full-function reuse
attacks are still possible. In order to mitigate them as well, finer-grained CFI
policies can be defined.

A general approach to generate a CFI policy is to start from the Control-Flow
Graph (CFG) of the program to protect. A CFG is a graph containing all basic
blocks of a program as nodes, and all expected control flow transfers as edges.
Extracting a precise CFG of a program is a well-known problem; however, it
is possible to produce approximated CFGs.

Having a CFG, a simple CFI policy is to allow a control flow transfer if and
only if the corresponding edge is present in the CFG. This constraint can
also be relaxed for performance reasons: a common optimization is to assign
every function a numeric label and only allow each call site to call functions
with one specific label. The downside of this approach is that any function
callable from the same call site needs to have the same label, leading to a loss
in precision. Another approach, often deployed in the real world, is to check
that the function type signature of the callee matches the one expected at
the call site; a simplified variant is to just check the number of arguments,
without considering their types.

Given this wide variety of CFI approaches, it is important to be able to
compare them in terms of various properties, including performance impact
and security guarantees. Measuring the performance impact of a CFI imple-
mentation can be performed in a straightforward way by comparing the run
time of a benchmark suite with and without the CFI protection. However,
defining a CFI security metric is not trivial. The most commonly-used metric,
Average Indirect-target Reduction (AIR) [52], is defined as the mean of the ratio
between the number of allowed call targets and the total possible targets.
However, AIR is not an effective CFI security metric, for two reasons. First,
most CFI implementations report similar AIR values higher than 99% [99],
which complicates a direct comparison. Second, even CFI schemes with very
high AIR have been shown to be vulnerable to attacks [55, 56]. Hence, AIR is
not an adequate means to measure the security of CFI variants. We mention
other CFI metrics and their shortcomings in Section 2.3.2.

2.3.1 Our Contribution
In the following paper:

[71 T. FRASSETTO, P. JAUERNIG, D. KOISSER, and A.-R. SADEGHI. “CFInsight: A
Comprehensive Metric for CFI Policies.” In: Network and Distributed System
Security Symposium (NDSS). 2022. CORE2021 rank: Ax. Included in Appendix G
on Page 133.

we start from the observation that not all basic blocks are useful to the ad-
versary. Since a pure ROP attack is mitigated by even coarse-grained CFI, the
best path the adversary has to arbitrary code execution is to invoke a system
call and change the memory permissions. Even if the adversary wants to
attack the operating system or exfiltrate some files, one or more system calls
are required. Hence, we introduce a new CFI metric, named CFGInsulation,
which is based on the assumption that the adversary needs to reach a system
call instruction. Our metric is formulated such that a program is more secure
if the distance to a system call instruction is higher. Additionally, the program
is less secure if there are many independent paths leading to the system call

2.3 CONTROL-FLOW INTEGRITY

instruction. By computing this metric for a program protected by various CFI
variants (as well as unprotected) we can compare their security effectiveness.

Moreover, we define a new CFI policy generator, named NumCFI, which
enforces the property that the distance to a system call instruction can de-
crease at most by 1 at every basic block transition. As a result, the adversary
is prevented from taking “shortcuts” to reach a system call. We show how
NumCFI is effective both on its own and combined with other existing CFI
policy generators.

Finally, we show a proof-of-concept implementation of a CFI enforcement
mechanism capable of enforcing a NumCFI policy, with a run time overhead
of 1.27%.

2.3.2 Related Work

CFISCHEMES In 2005, Abadi et al. [25] introduce the concept of CFI. Their
design is based on labels, just like many later CFI variants. As we mentioned
earlier, a label-based CFI approach assigns a single numeric label to every
possible call target, then instruments indirect calls so that the actual label of
the callee is checked against the expected label value. This effectively splits
callers and callees in equivalence classes, one for each possible label value.
Our novel policy generator NumCFI is orthogonal to label-based approaches,
as it is based on an ordering relation instead of a equivalence relation. The
same paper [25] also introduces the first CFI implementation, which uses
just one label for all address-taken functions. It instruments binaries using a
proprietary instrumentation tool.

Zhang et al. [52] propose a binary-only instrumentation tool, without the
need to have any access to the build process. Zhang et al. [51] propose a
randomized CFI approach which leverages a “springboard section”; indirect
control transfers need to know the correct entry for the intended callee in the
springboard. Tice et al. [58] extend this technique by also protecting virtual
C++ calls. Lockdown by Payer et al. [73] dynamically generates CFI checks at
run time.

A number of research efforts leverage function parameter type information
to restrict control-flow transfers. TypeArmor by Van Der Veen et al. [93]
extracts the number of parameters of each function using binary analysis,
then instruments code to only allow function calls if enough arguments are
passed. RAP by the PaX Team [72] and TCFI by Muntean et al. [129] also
consider the parameter types in order to decide whether to allow a control-
flow transfer. MARX by Pawlowski et al. [113] and VCI by Elsabagh et al.
[103] further refine the type system by taking into account C++-specific virtual
calls based on virtual tables. Clang, the front-end of the LLVM project, also
includes a type-based CFI protection based on the dynamic types of variables.
In general, type-based CFI implementations tend to have a low overhead
and good compatibility. Hence, they are often deployed in the real world.
However, they do not consider the distance of basic blocks to system calls or
other attacker targets, so that some attacks are still possible [122].

Another research direction is to integrate additional contextual information
into the CFI policy. As an example, a context-sensitive CFI policy considers not
only the basic block that contains the call site, but also the call stack [77, 102,
125]. CFInsight does not support context-sensitive CFI in the current form,
but the approach can be applied to model context-sensitive policies as well.

EXISTING CFI SECURITY METRICS As we already mentioned, security
metrics for CFI are important tools to compare the effectiveness of various
CFI schemes.

13

14

MEMORY-CORRUPTION ATTACK MITIGATIONS

The most widespread CFI security metric is Average Indirect-target Reduction
(AIR), which was introduced in 2013 by Zhang et al. [52]. In order to compute
AIR, one must consider every indirect control transfer instruction; specifically,
how many targets are allowed by the CFI policy and how many targets are
possible without CFI. AIR is then defined as the mean of the ratio between
the allowed targets and the possible targets. Similarly, ATA by Ge et al. [82] is
defined as the average number of allowed targets, without considering the
total number of possible targets. iCTR by Muntean et al. [139] is defined as
the sum of the number of the allowed targets over all indirect control transfer
instructions. Lastly, QuantitativeSecurity by Burow et al. [99] is defined as
the ratio between the number of CFI equivalence classes and the size of
the largest equivalence class. These metrics do not consider the specific
position of a basic block inside the CFG and the block’s connectivity; our
metric CFGInsulation improves on this by considering the paths from basic
blocks to system calls.

SIDE-CHANNEL ATTACK MITIGATIONS

As we mentioned, memory-corruption attacks leverage vulnerabilities in a
program to subvert its behavior. Side-channel attacks are even more devious, as
they allow the adversary to extract information even from a bug-free program.

Side-channel attacks are only possible if both the attacker and the victim
can access the same resource, e.g., a shared cache or buffer. In general, a
side-channel attack requires three steps. First, the adversary sets up the
shared resource so that it is in a known state. Second, the victim executes
for some amount of time. Third, the adversary examines the state of the
shared resource, compares it with the previous known state, and extracts
secret information from the difference in state.

We will focus on cache-based side-channel attacks. On modern computers,
caches are used to provide lower-latency access to recently-used data. All
data in main memory is divided into cache lines; when the processor needs
to access some data, it requests the corresponding cache line(s) from the
cache. If the data is available in the cache, it is promptly returned to the
processor, otherwise it is fetched from the memory. Multiple levels of caches
are possible and commonplace.

Most modern shared caches are accessed in a set-associative way. This
means that the cache is divided in a number of sets; each cache line can only
be stored into a specific set, depending on its address in main memory. In
this context, the attacker can perform a simple cache-based side-channel
attack by filling the entire cache, letting the victim execute, then checking
how many of the attacker’s cache lines are still in cache. Each cache line of
the attacker that is no longer in the cache was evicted by a cache line of the
victim. Hence, if a line of the attacker was evicted, the attacker knows that the
victim accessed a cache line within the same cache set. This knowledge about
(partial) addresses accessed by the victim can be leveraged in a number of
ways, but it is especially powerful if the victim executes some cryptographic
operation and the memory accesses depend on a secret key.

3.1 SOFTWARE-ONLY SIDE-CHANNEL MITIGATIONS

Cache policies are implemented by hardware. In most cases, independent soft-
ware vendors design their code for a commodity hardware platform, which
cannot be changed. If the hardware is fixed, the algorithm can be imple-
mented in such a way that side-channel leakage is minimized. It is possible
to change the algorithm manually (e.g., by accessing all items of an array
instead of only accessing the one required variable) so that no discernible pat-
tern exists in the victim’s memory accesses. However, side-channel-resilient
implementations require a substantial amount of manual effort by security
experts, while still being error-prone. Hence, we designed a tool capable of
automatically protecting access to data, without the need for manual analysis.

3.1.1 Our Contribution

Cache-based side-channel attacks are particularly relevant on SGX, as such
attacks are purposefully excluded from the official SGX thread model. To
mitigate these attacks, in the following paper:

15

16

SIDE-CHANNEL ATTACK MITIGATIONS

[4] F. BRASSER, S. CAPKUN, A. DMITRIENKO, T. FRASSETTO, K. KOSTIAINEN, and
A.-R. SADEGHI. “DR.SGX: Automated and Adjustable Side-Channel Protection
for SGX using Data Location Randomization.” In: Annual Computer Security
Applications Conference (ACSAC). 2019. CORE2021 rank: national USA, CORE2018
rank: A. Included in Appendix D on Page 83.

we design and implement an automated data randomization framework for
SGX enclaves. Our approach is agnostic to the application semantics and
does not require manual annotations. The data is randomized at the granu-
larity of a cache line, thus mitigating both paging-based and caching-based
side channels, and is periodically re-randomized to mitigate correlation at-
tacks. Our evaluation shows that DR.SGX causes overheads between approx-
imately 5x and 11x, depending on the re-randomization frequency, unlike
approaches based on Oblivious RAM (ORAM), which have overheads in the
order of 100x [135].

3.1.2 Related Work

SIDE-CHANNEL ATTACKS ON TEES In SGX, memory management, in-
cluding paging, is managed by the operating system [80], which is considered
untrusted. As a result, the operating system can very easily build a noise-free
side channel based on paging [78, 119], which leaks the address of every mem-
ory access with the granularity of a page (4 KB). In addition to the paging-based
side channel, an adversary can also leverage leakage based on a caching-based
side channel. A cache-based side channel is subject to noise, but it can leak
more fine-grained information than paging [98, 106, 112, 115, 124]. Combining
leakage based on paging and caching is possible, which leaks the address of
memory accesses with the granularity of a cache line (64 bytes).

TRANSIENT EXECUTION ATTACKS ON TEES Inrecentyears, anumber of
attacks have been proposed that leverage transient execution vulnerabilities,
e.g., Foreshadow [134]. These attacks leverage side channels that had not
been demonstrated previously; Intel patched them in microcode updates
and fixed them in hardware for later products [120]. DR.SGX focuses instead
on cache-based and paging-based side channels, which are still possible on
current hardware.

SIDE-CHANNEL DEFENSES One of the best options for the adversary is
to deploy the attack code on the logical partner of the victim core, so that
both can access the same L1 cache. This is only possible if Simultaneous Multi-
Threading (SMT) is supported and enabled on the processor. As a mitigation,
Intel introduced the possibility to disable this feature, and included this setting
in the attestation report [137], in order to allow remote parties to only trust
enclaves that run without SMT. Varys by Oleksenko et al. [130] achieves the
same goal by running two threads at the same time and periodically checking
that they are executing on two logical partner cores. However, it does not
protect the Last-Level Cache (LLC), which can be accessed by other physical
cores. Moreover, blocking two logical cores or even disabling SMT altogether
limits the processing power of the machine and does not protect against the
paging-based side channel. In contrast, with DR.SGX all other logical cores
remain available.

A number of research works leverage ORAM to protect execution in a TEE.
ORAM [20, 22, 37, 41, 50, 75] was originally developed in a client-server en-
vironment and allows oblivious accesses to memory, i.e., an adversary that
monitors traffic cannot learn which data is being accessed. Oblivious execution
enhances ORAM by also preventing the adversary from learning what pro-

3.2 HARDWARE-ASSISTED SIDE-CHANNEL MITIGATIONS

gram instructions are executed and which control flow paths are followed [46,
47, 69]. Obfuscuro by Ahmad et al. [135] is an oblivious execution implemen-
tation for SGX. The overhead of full oblivious execution on SGX is significant,
with an average of 83x and peaks of 220x. In contrast, DR.SGX’s overhead is
lower by an order of magnitude.

Sinha et al. [118] automatically protect a program written in a custom lan-
guage from paging-based side channels. However, unlike DR.SGX, it does not
support legacy code.

Raccoon by Rane et al. [74] provides targeted protection for specific data,
relying on developer annotations. Protected data is then accessed obliviously.
Similarly, CoSMIX by Orenbach et al. [140] is a compiler-based framework
that identifies sensitive data based on annotations and static analysis. DR.SGX
does not require developer annotations.

A different line of research aims to develop leakage-resilient algorithms
and application-specific defenses, e.g., for machine learning algorithms [92],
for the MapReduce framework [71], for a database [104], or for encrypted
search [121]. Application-specific defenses can be very effective in the specific
case but require substantial effort to be designed and implemented; DR.SGX
strives to be generally applicable with limited additional effort.

A number of works focus on detecting attacks that require frequent interrup-
tions: T-SGX by Shih et al. [117] leverages Intel’s Transactional Synchronization
Extensions (TSX), while Déja Vu by Chen et al. [100] monitors the execution
time.

Cloak by Gruss et al. [107] also uses TSX to touch a number of cache lines
before sensitive memory accesses to developer-annotated code regions, mak-
ing them atomic. Due to the complexity of loading large amounts of data in
the cache, Cloak can have overheads up to 30x in some cases. Moreover, these
approaches can only be deployed on processors that support TSX.

Autarky [144] mitigates the paging-based side channels by allowing the
enclave to control paging; however, it requires hardware modifications.

Code diversity approaches [62] can also be deployed in the context of a
TEE, complementing the data randomization proposed in DR.SGX. As an
example, SGXShield by Seo et al. [116] demonstrates code randomization for
SGX; however, its implementation is incomplete [11].

NEW CACHE ARCHITECTURES A different approach to eliminate caching-
based side-channel leakage at its root is to redesign the cache architecture
with this goal in mind. We describe our own proposal in Section 3.2.1 and the
related work in Section 3.2.2.

3.2 HARDWARE-ASSISTED SIDE-CHANNEL MITIGATIONS

In contrast to software-only side-channel mitigations, which we considered
in the previous Section, hardware-assisted side-channel mitigations leverage
one or more hardware security features to protect programs. On the one
hand, due to the dependency on custom hardware features, these defenses
are not easily deployable on existing platforms. On the other hand, hardware
modifications can solve the problem at its root, providing enhanced security
guarantees with limited performance overhead.

In the context of cache-based side channels, a simple and secure solution
is to partition the cache, so that each program has exclusive use of a portion
of the cache. However, cache partitioning has the substantial drawback that
the number of possible partitions is limited and that each program gets an in-
creasingly small amount of cache, leading to performance slowdowns. While
these issues can be partially alleviated by assigning multiple programs to the
same partitions, cache partitioning still imposes a significant overhead. This

17

18

SIDE-CHANNEL ATTACK MITIGATIONS

is especially unfortunate if some of the programs are not sensitive and do not
require protection at all.

3.2.1 Our Contribution
In order to address this problem, in the following paper:

[6] G.DESSOUKY, T. FRASSETTO, and A.-R. SADEGHI. “HybCache: Hybrid Side-
Channel-Resilient Caches for Trusted Execution Environments.” In: 29th
USENIX Security Symposium. 2020. CORE2021 rank: Ax. Included in Appendix F
on Page 115.

we introduce HybCache, a hybrid cache design that combines a traditional set-
associative cache and a leakage-resilient fully-associative subcache. The core
observation at the base of HybCache is that only a subset of the programs on a
system are security-sensitive and require protection against side channels;
often, the majority of the executing code does not require protection. As an
example, if the workload of a system is already split between a few trusted
components (that run in TEEs) and the rest of the code, it is likely that only the
trusted components require side-channel protection. The rest of the workload
likely does not require protection.

Hence, HybCache caches are accessed differently, depending on whether
the requester is security-sensitive or not. If the request comes from a security-
insensitive program, the whole cache is accessed set-associatively, as usual.
However, a portion of the cache, called subcache, can also be accessed fully-
associatively by security-sensitive code. Moreover, security-sensitive requests
use a random replacement policy. Since these access and replacement policies
are independent from the address of the data accessed, it is impossible for an
adversary to gain any information regarding which addresses the victim is
accessing. While the adversary cannot learn anything about which memory
addresses are accessed by the victim, a powerful adversary can still observe
that the victim performed some memory accesses. While unfortunate, this
leakage can only be solved by full cache partitioning, which has substantial
performance overhead.

As a consequence of our design, security-insensitive cache accesses sustain
no overhead in our evaluation. Security-sensitive accesses show overheads of
3.5%-5%, which is a small price considering the side-channel protection.

3.2.2 Related Work

CACHE PARTITIONING The core idea of cache partitioning is to divide
the cache in multiple partitions so that different components of the workload
(e.g., components or TEEs) cannot interfere with each other’s cache lines,
preventing cache-based side channels.

Cache partitioning can be realized by splitting the available cache in dis-
jointed subsets, either through hardware modifications or using just software.
An example of the latter is page coloring, a technique based on choosing the
physical address of memory pages in such a way that different components
use disjointed groups of cache sets.

A similar result can be achieved by enforcing a cache flush when a context
switch between mutually distrusting components happens. Clearly, this is
only applicable to private caches (which are only accessed by one component
at a time).

Static cache partitioning can lead to slowdowns in the order of 40% even
with only two partitions [94]; increasing the number of partitions decreases
their size, leading to even higher overheads. SecDCP by Wang et al. [94] and

3.2 HARDWARE-ASSISTED SIDE-CHANNEL MITIGATIONS

CacheBar by Zhou et al. [95] dynamically manage the size of each partition
depending on each application’s requirements to try and reduce the overhead.
In Sanctum by Costan et al. [81], private caches are flushed on context switch,
while shared caches are partitioned. Since the minimum size of partitions is
fixed, they do not scale well to a higher number of partitions. The overhead
also applies to security-insensitive code, unlike HybCache which does not slow
it down. Chunked-Cache by Dessouky et al. [101] partitions shared caches
based on more flexible chunks, unlike previous approaches that use way-
based partitioning, allowing for better scalability.

A number of works partition the cache between security-sensitive and
security-insensitive portions. StealthMem by Kim et al. [39] achieves this
through page coloring, while CATalyst by Liu et al. [90] leverages Intel's Cache
Allocation Technology (CAT). PLcache by Wang et al. [30] includes hardware
modifications that allow sensitive processes to lock some lines into the cache
so that they cannot be evicted by other processes. All of these solutions reduce
the amount of cache which is usable by security-insensitive programs, unlike
HybCache.

It is important to note that partitioning caches on commodity hardware
requires the cooperation of the operating system. Hence, it is not suitable for
user-space TEEs like SGX. We describe some TEE-compatible approaches in
Section 3.1.2.

CACHE RANDOMIZATION A number of approaches have been proposed
that randomize the mapping function from the memory address to the possi-
ble locations in cache. RPCache by Wang et al. [30] randomly reassigns cache
lines from a cache set to another, while NewCache by Liu et al. [91] randomizes
the mapping at the cache line level. Time-Secure Cache by Trilla et al. [133]
uses a mapping function that depends on the ID of the requesting process.
ScatterCache by Werner et al. [142] uses a different pseudo-random cache set
mapping for each security domain. While these approaches obfuscate the
mapping algorithm, they still have a deterministic mapping of cache lines
to portions of the cache. As a result, an attacker can still correlate access
patterns given enough repetitions, unless the mapping function is re-keyed,
which imposes overheads.

Mirage by Saileshwar et al. [148] uses indirection to decouple the tag store
from the data store, in order to allow for a fully-associative cache with lookup
performance similar to set-associative caches. However, the performance
overhead of this design applies to the whole workload, while HybCache does
not impose overheads on non-security-sensitive code.

19

TEE APPLICATIONS

In the previous chapters we have proposed a number of system-level security
mitigations against run-time attacks. A number of works have focused on
leveraging TEEs for security purposes or protecting them from attacks. We
now conclude with two examples of how TEEs can be used to significantly
simplify the design of protocols.

In general, when mutually distrusting parties want to collaborate in a pro-
tocol, a simple solution is to resort to a trusted third party, which can collect
inputs from all participants and then securely conduct the protocol. Often,
though, finding a third party which is trusted by all participants is impractical
or even impossible.

A general solution to this problem is Secure Multi-Party Computation (MPC),
which is a cryptographic technique that allows mutually distrusting parties to
perform a computation without disclosing the inputs and the intermediate
results to any of the parties. However, MPC techniques are very expensive in
terms of computation time and network overhead.

The use of TEEs allows for significant improvements in the performance
compared to MPC approaches, without the need to trust anyone (besides the
hardware manufacturer). TEEs can then be used similarly to a “programmable
trusted third party”, with the added advantage of remote attestation, through
which every participant can get a confirmation that the TEE is executing the
expected program.

As we mentioned in Chapter 3, TEEs can be vulnerable to a number of side-
channel attacks; however, a number of mitigations have been proposed as
well (Sections 3.1.1, 3.1.2, 3.2.1 and 3.2.2). In this Chapter we consider idealized
TEEs that can withstand these attacks.

4.1 AUTOMATED SPEECH RECOGNITION

Automated speech recognition is an increasingly used technique, e.g., by a
number of smart digital assistants. Speech recognition is usually performed
through machine learning. Machine learning models are provided by a hand-
ful of vendors, which want to protect them from their competition and prefer
to keep them on their own servers. However, these models require the record-
ing of the user’s voice in order to work. The voice recording often contains
sensitive biometric data and user information.

Traditionally, the voice recognition process happens on the vendor’s servers:
this effectively protects the machine learning models, but the user has no
guarantee on how the recording is processed. Conversely, performing the
recognition directly on the user’s device protects the recording, but leaves
the models vulnerable.

4.1.1 Our Contribution
To address this problem, in the following paper:

[3] F. BRASSER, T. FRASSETTO, K. RIEDHAMMER, A.-R. SADEGHI, T. SCHNEIDER,
and C. WEINERT. “VoiceGuard: Secure and Private Speech Processing.” In:
Interspeech. 2018. CORE2021 rank: A. Included in Appendix C on Page 77.

21

22

TEE APPLICATIONS

we leverage an SGX enclave to securely process voice commands while pro-
tecting both the recording and the recognition models. The voice recognition
algorithm, which does not contain secret information, is prepared by the
vendor and made available to the users, who can inspect it and make sure
that the recording is not disclosed. The vendor then prepares a TEE which
executes the published code (users can verify this through remote attestation).
The TEE receives, in encrypted form, the voice recognition models and the
voice recording; it then processes the recording and only releases the textual
representation of the user’s command. Through this design, both parties can
be sure that their data is kept confidential.

In our evaluation, we show that this design is realistic and that real-time
processing of voice recordings is possible.

4.2 EFFICIENT SMART CONTRACTS ON LEGACY BLOCKCHAINS

Cryptocurrencies are prominent examples of decentralized systems, which do
not rely on any central trusted party. Earlier examples, including Bitcoin, only
support simple operations like transfer of funds. Later cryptocurrencies, like
Ethereum, expanded their feature set to include smart contracts, i.e., pieces of
code that can implement arbitrary computation. However, Ethereum imposes
significant limitations and costs for smart contracts, which limit their possible
complexity; Bitcoin does not support them at all.

4.2.1 Our Contribution
To address this problem, in the following paper:

[5] P.Das,L.ECKEY, T. FRASSETTO, D. GENS, K. HOSTAKOVA, P. JAUERNIG, S. FAUST,
and A.-R. SADEGHI. “FastKitten: Practical Smart Contracts on Bitcoin.” In: 28th
USENIX Security Symposium. 2019. CORE2021 rank: Ax. Included in Appendix E
on Page 97.

we propose FastKitten, which allows efficient execution of smart contracts in
a TEE. Due to the flexibility and simplicity of programming a TEE, FastKitten
can support complex smart contracts; their execution is efficient, since they
can be executed just once instead of on multiple nodes. In most cases the
execution does not interact with the blockchain, which allows real-time in-
teraction between participants and the contract. Moreover, FastKitten can be
deployed on top of simpler blockchains that do not support smart contracts;
we show this by demonstrating a proof-of-concept implementation based on
Bitcoin. Lastly, smart contracts in FastKitten keep their state private by design,
unlike distributed smart contracts on Ethereum, whose data is inherently
public.

4.3 RELATED WORK

CRYPTOGRAPHIC TECHNIQUES Secure Multi-Party Computation (MPC)
is a class of cryptographic techniques that allow multiple parties to collab-
oratively perform a computation without disclosing the inputs or interme-
diate results to the parties. The most significant advantage of MPC is that
it does not require a trusted third party: the protocol itself guarantees the
data confidentiality. A number of solutions have been proposed that leverage
MPC to evaluate machine learning models [108, 126, 131, 132], including for
voice recognition [48, 105], and to run smart contracts interacting with a
blockchain [68, 87, 88]. However, MPC imposes very high overheads in terms
of networking messages, processing speed, and start-up times; the latter is

4.3 RELATED WORK

particularly unfortunate for real-time speech recognition, while the former
two are challenging in any scenario.

TEES FORMPC AND SPEECH RECOGNITION Alogical stepistointroduce
TEEs into MPC protocols [66, 86, 97]. The introduction of TEEs decreases
computation and networking overheads significantly; however, it requires
trusting the platform vendor and its hardware, while traditional MPC only
requires trusting the protocol.

After the publication of VoiceGuard, we also worked on Offline Model
Guard [16], which runs speech recognition tasks on a user’s device. Similarly
to VoiceGuard, OMG protects the confidentiality of the speech recognition
model using a TEE. However, since the model runs on the user’s device, it
can be used even without an active network connection.

TEE APPLICATIONS FOR SMART CONTRACTS INTERACTING WITH A
BLOCKCHAIN The popular cryptocurrency platform Ethereum supports
smart contracts, which are pieces of code that live on the blockchain and can
interact with different (untrusted) users. Smart contracts are executed by a
large number of nodes; hence, tampering with them is considered infeasible
(except in the case of programming errors). While the existence of smart
contracts allowed the creation of a wide variety of decentralized services,
Ethereum contracts have some downsides. First and foremost, they are in-
herently public, along with their input data. Second, it is expensive to run
complex smart contracts, due to the fact that they need to be run by a large
number of nodes. Third, they are only possible on Ethereum; Bitcoin, another
popular cryptocurrency, does not support complex smart contracts.

A common approach to address some of these challenges is to create
so-called second-layer solutions, like state channels [110], Arbitrum [127] or
Plasma [114]. These approaches have the disadvantage that, if the parties do
not agree on the result of a smart contract, the dispute has to be resolved on
the blockchain, which is expensive.

Similarly to FastKitten, Ekiden [136] leverages a TEE to run smart contracts
off-chain. However, Ekiden only supports input from one client at a time and
only receives inputs from the blockchain, leading to low throughput and high
costs for interactive programs. With FastKitten, the whole program execution,
possibly including multiple rounds of inputs, happens offline in the optimistic
case. Hyperledger Avalon [141] is an industry proposal with downsides similar
to Ekiden.

23

CONCLUSION AND OUTLOOK

Due to the rising complexity of computer systems and programs, ensuring
that a program is bug-free is increasingly impractical. While manual and
automated bug-finding strategies are important and beneficial, they are not
sufficient. Hence, it is also important to develop vulnerability mitigation
strategies, which aim to make the exploitation of these vulnerabilities signifi-
cantly harder or even impossible.

We start our presentation in Chapter 2, in which we focus on defenses
against run-time attacks.

Selfrando [1, Appendix A] is a load-time code randomization tool. It applies
fine-grained randomization to existing applications every time they start,
while allowing the use of traditional distribution channels and debugging
tools. The use of randomization makes it significantly harder for the attacker
to know the location of any piece of code in memory, which is required to
mount memory-corruption attacks.

JITGuard [2, Appendix B] uses memory isolation to protect from tampering
the internal data of a Web browser’s JIT compiler. It leverages an SGX enclave
to isolate the JIT compiler from unintended accesses. It also mitigates other
attacks on JIT-compiled code by randomizing its location in memory and
using a trampoline layer. JIT-compiled code resides outside of the enclave in
order to preserve performance.

CFInsight [7, Appendix G] introduces new metrics to evaluate the security
effectiveness of CFI policies. It considers all paths from possible memory
corruption points to system call instructions to quantify how hard it is for
the adversary to reach its goal. The same paper introduces a new CFI policy
generator, NumCFI, which enforces the property that the distance to a system
call instruction can decrease at most by 1 at a time. NumCFI prevents the
attacker from “taking shortcuts” to a system call instruction.

In Chapter 3 we move our focus to a class of attacks which are even more
devious: side-channel attacks on TEEs.

DR.SGX [4, Appendix D] is a software-only randomization tool for data inside
of an SGX enclave. The location of all data inside the enclave is randomized
in order to mitigate side-channel attacks that aim to understand the address
where some variable is located. Periodic re-randomization is used when
the enclave runs for an extended amount of time. The data permutation is
stored efficiently leveraging small-domain encryption, while a side-channel-
oblivious permutation cache improves performance.

HybCache [6, Appendix F] leverages a new cache paradigm to prevent a
number of cache-based side-channel attacks at the root. Security-sensitive
datarequests are processed fully-associatively and with a random replacement
policy in a special part of the cache. As a result, it is impossible to mount an
attack that leaks the address of a variable. Security-insensitive data requests
access the cache using the traditional set-associative scheme, and hence, their
performance is unaffected.

Lastly, in Chapter 4 we present two applications of TEE technology.

In VoiceGuard [3, Appendix C] we show how a TEE can be used to perform au-
tomated voice recognition while protecting from disclosure both the machine
learning model and the voice recording.

25

26

CONCLUSION AND OUTLOOK

In FastKitten [5, Appendix E] we use a TEE to enable fast interactive exe-
cution of smart contracts on top of Bitcoin, a cryptocurrency that does not
natively support complex smart contracts.

5.1 FUTURE DIRECTIONS

We have shown a number of defenses against control-flow hijacking, side-
channel leakage, and data-only attacks on JIT compilers.

Due to the fast pace of the tech industry, security solutions and mitigations
need to be periodically updated in light of new technologies. New industry
proposals, e.g., AMD’s Secure Encrypted Virtualization (SEV) and Intel’s Trust
Domain Extensions (TDX), allow new capabilities that can be exploited, but at
the same have the potential to introduce new vulnerabilities as well.

At the same time, there are some common tasks, e.g., data hiding, which
are very hard to implement on commodity platforms. It would be beneficial
to have platform support for custom address spaces for security-sensitive
data, e.g., through segmentation or custom instructions [13].

Moreover, while scientific publications often tend to have a very narrow
focus, holistic approaches are also valuable: as an example, a comprehen-
sive model of run-time attack possibilities in various conditions, in different
programming paradigms and under one or more run-time mitigations.

Similarly, there is a need for an integrated bug-management approach. All
code could be subject to static analysis first. Any code portion that cannot be
proven bug-free should be subject to targeted fuzzing; any code that cannot
adequately be reached by the fuzzer should be protected by specific run-time
mitigations. Such an approach would contribute to minimizing exploitable
vulnerabilities while preserving the performance of secure code.

BIBLIOGRAPHY

PUBLICATIONS PART OF THIS CUMULATIVE DISSERTATION

[1]

[2]

(3]

[5]

(6]

M. CONTI, S. CRANE, T. FRASSETTO, A. HOMESCU, G. KOPPEN, P. LARSEN,
C. LIEBCHEN, M. PERRY, and A.-R. SADEGHI. “Selfrando: Securing the Tor
Browser Against De-anonymization Exploits.” In: Privacy Enhancing Technologies
Symposium. 2016. CORE2021 rank: A, CORE2014 rank: B. Included in Appendix A
on Page 45.

T. FRASSETTO, D. GENS, C. LIEBCHEN, and A.-R. SADEGHI. “JITGuard: Harden-
ing Just-in-time Compilers with SGX.” In: ACM Conference on Computer and Com-
munications Security (CCS). 2017. CORE2021 rank: Ax. Included in Appendix B
on Page 61.

F. BRASSER, T. FRASSETTO, K. RIEDHAMMER, A.-R. SADEGHI, T. SCHNEIDER,
and C. WEINERT. “VoiceGuard: Secure and Private Speech Processing.” In:
Interspeech. 2018. CORE2021 rank: A. Included in Appendix C on Page 77.

F. BRASSER, S. CAPKUN, A. DMITRIENKO, T. FRASSETTO, K. KOSTIAINEN, and
A.-R. SADEGHI. “DR.SGX: Automated and Adjustable Side-Channel Protection
for SGX using Data Location Randomization.” In: Annual Computer Security
Applications Conference (ACSAC). 2019. CORE2021 rank: national USA, CORE2018
rank: A. Included in Appendix D on Page 83.

P. DAs, L. ECKEY, T. FRASSETTO, D. GENS, K. HOSTAKOVA, P. JAUERNIG, S.
FAUST, and A.-R. SADEGHI. “FastKitten: Practical Smart Contracts on Bitcoin.”
In: 28th USENIX Security Symposium. 2019. CORE2021 rank: Ax. Included in
Appendix E on Page 97.

G. DESSOUKY, T. FRASSETTO, and A.-R. SADEGHI. “HybCache: Hybrid
Side-Channel-Resilient Caches for Trusted Execution Environments.” In: 29th
USENIX Security Symposium. 2020. CORE2021 rank: Ax. Included in Appendix F
on Page 115.

T. FRASSETTO, P. JAUERNIG, D. KOISSER, and A.-R. SADEGHI. “CFInsight: A
Comprehensive Metric for CFI Policies.” In: Network and Distributed System
Security Symposium (NDSS). 2022. CORE2021 rank: Ax. Included in Appendix G
on Page 133.

OTHER PUBLICATIONS BY THE AUTHOR

(8]

[9]

[10]

[11]

[12]

T. FRASSETTO. “Self-Rando: Practical Load-time Randomization Against Run-
time Exploits.” M.Sc. Thesis. Universita degli Studi di Padova, 2016.

H. FEREIDOONI, T. FRASSETTO, M. MIETTINEN, A.-R. SADEGHI, and M. CONTI.
“Fitness Trackers: Fit for Health but Unfit for Security and Privacy.” In: IEEE In-
ternational Workshop on Safe, Energy-Aware, & Reliable Connected Health (CHASE-
SEARCH). 2017.

M. MIETTINEN, S. MARCHAL, I. HAFEEZ, T. FRASSETTO, N. ASOKAN, A.-R.
SADEGHI, and S. TARKOMA. “IoT Sentinel Demo: Automated Device-Type Iden-
tification for Security Enforcement in IoT.” In: IEEE International Conference on
Distributed Computing Systems (ICDCS). 2017.

A. BIONDO, M. CONTIL, L. DAVI, T. FRASSETTO, and A.-R. SADEGHI. “The Guard’s
Dilemma: Efficient Code-Reuse Attacks Against Intel SGX.” In: 27th USENIX
Security Symposium. 2018.

F. BRASSER, L. DAVI, A. DHAVLLE, T. FRASSETTO, S. M. P. DINAKARRAO, S.
RAFATIRAD, A.-R. SADEGHTI, A. SASAN, H. SAYADI, S. ZEITOUNI, and H. HOMAY-
OUN. “Advances and Throwbacks in Hardware-assisted Security: Special Ses-
sion.” In: International Conference on Compilers, Architecture and Synthesis for
Embedded Systems (CASES). 2018.

27

28

BIBLIOGRAPHY

[13]

[14]

[15]

(16]

[17]

[18]

[19]

T. FRASSETTO, P. JAUERNIG, C. LIEBCHEN, and A.-R. SADEGHI. “IMIX: In-
Process Memory Isolation EXtension.” In: 27th USENIX Security Symposium.
2018.

C. ASCHERMANN, T. FRASSETTO, T. HOLZ, P. JAUERNIG, A.-R. SADEGHI, and
D. TEUCHERT. “Nautilus: Fishing for Deep Bugs with Grammars.” In: Network
and Distributed System Security Symposium (NDSS). 2019.

S. P. BAYERL, F. BRASSER, C. BUSCH, T. FRASSETTO, P. JAUERNIG, J. KOLBERG,
A. NAUTSCH, K. RIEDHAMMER, A.-R. SADEGHI, T. SCHNEIDER, E. STAPF, A.
TREIBER, and C. WEINERT. “Poster: Privacy-preserving Speech Processing Via
STPC and TEEs.” In: 2nd Privacy Preserving Machine Learning (PPML) Workshop.
2019.

S. P. BAYERL, T. FRASSETTO, P. JAUERNIG, K. RIEDHAMMER, A.-R. SADEGH],
T. SCHNEIDER, E. STAPF, and C. WEINERT. “Offline Model Guard: Secure and
Private ML on Mobile Devices.” In: 23rd Design, Automation and Test in Europe
Conference (DATE). 2020.

J. BUCHMANN, G. DESSOUKY, T. FRASSETTO, A. KIsS, A.-R. SADEGHI, T. SCHNEI-
DER, G. TRAVERSO, and S. ZEITOUNI. “SAFE: A Secure and Efficient Long-
Term Distributed Storage System.” In: 8th International Workshop on Security in
Blockchain and Cloud Computing (SBC). 2020.

G. DESSOUKY, T. FRASSETTO, P. JAUERNIG, and A.-R. SADEGHI. “With Great
Complexity Comes Great Vulnerability: Challenges of Secure Processor De-
sign.” In: IEEE Security & Privacy (2020).

Z.KENJAR, T. FRASSETTO, D. GENS, M. FRANZ, and A.-R. SADEGHI. “VOLTpwn:
Attacking x86 Processor Integrity from Software.” In: 29th USENIX Security
Symposium. 2020.

OTHER REFERENCES

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

O. GOLDREICH. “Towards a Theory of Software Protection and Simulation by
Oblivious RAMs.” In: Annual ACM Symposium on Theory of Computing. 1987.

R. WAHBE, S. Lucco, T. E. ANDERSON, and S. L. GRAHAM. “Efficient Software-
Based Fault Isolation.” In: 14th ACM Symposium on Operating Systems Principles.
1993.

O. GOLDREICH and R. OSTROVSKY. “Software Protection and Simulation on
Oblivious RAMSs.” In: Journal of the ACM (1996).

PAX TEAM. PaX Address Space Layout Randomization (ASLR). 2003. URL: http:
//pax.grsecurity.net/docs/aslr.txt.

M. ABADI, M. BUDIU, U. ERLINGSSON, and J. LIGATTI. “Control-Flow Integrity.”
In: ACM Conference on Computer and Communications Security (CCS). 2005.

M. ABADI, M. BUDIU, U. ERLINGSSON, and J. LIGATTI. “CFI: Principles, Imple-
mentations, and Applications.” In: ACM Conference on Computer and Communi-
cations Security (CCS). 2005.

S. BHATKAR, R. SEKAR, and D. C. DUVARNEY. “Efficient Techniques for Com-
prehensive Protection from Memory Error Exploits.” In: 14th USENIX Security
Symposium. 2005.

M. CASTRO, M. COSTA, and T. HARRIS. “Securing Software By Enforcing Data-
flow Integrity.” In: 7th USENIX Symposium on Operating Systems Design and
Implementation. 2006.

S. MCCAMANT and G. MORRISETT. “Evaluating SFI for a CISC architecture.” In:
15th USENIX Security Symposium. 2006.

H. SHACHAM. “The Geometry of Innocent Flesh on the Bone: Return-into-libc
Without Function Calls (on the x86).” In: ACM Conference on Computer and
Communications Security (CCS). 2007.

Z. WANG and R. B. LEE. “New Cache Designs for Thwarting Software Cache-
based Side Channel Attacks.” In: Annual International Symposium on Computer
Architecture. 2007.

http://pax.grsecurity.net/docs/aslr.txt
http://pax.grsecurity.net/docs/aslr.txt

[31]

[32]

[35]

(36]

[37]

[38]

[39]

[40]

[41]

OTHER REFERENCES

D. BLAZAKIS. “Interpreter Exploitation: Pointer Inference and JIT Spraying.”
In: BlackHat DC. 2010.

W. DE GROEF, N. NIKIFORAKIS, Y. YOUNAN, and F. PIESSENS. “Jitsec: Just-in-
time Security for Code Injection Attacks.” In: Benelux Workshop on Information
and System Security (WISSEC). 2010.

D. SEHR, R. MUTH, C. BIFFLE, V. KHIMENKO, E. PASKO, K. SCHIMPF, B. YEE,
and B. CHEN. “Adapting Software Fault Isolation to Contemporary CPU Archi-
tectures.” In: 18th USENIX Security Symposium. 2010.

J. ANSEL, P. MARCHENKO, U. ERLINGSSON, E. TAYLOR, B. CHEN, D. L. SCHUFF,
D. SEHR, C. L. BIFFLE, and B. YEE. “Language-independent Sandboxing of
Just-in-time Compilation and Self-modifying Code.” In: 32nd ACM SIGPLAN
Conference on Programming Language Design and Implementation. 2011.

P. CHEN, Y. FANG, B. MAO, and L. XiE. “JITDefender: A defense against JIT
spraying attacks.” In: IFIP International Information Security Conference. 2011.

C. GIUFFRIDA, A. KUIJSTEN, and A. S. TANENBAUM. “Enhanced Operating
System Security Through Efficient and Fine-grained Address Space Random-
ization.” In: 215t USENIX Security Symposium. 2012.

M. T. GOODRICH, M. MITZENMACHER, O. OHRIMENKO, and R. TAMASSIA.
“Privacy-preserving Group Data Access Via Stateless Oblivious RAM Simula-
tion.” In: Annual ACM-SIAM symposium on Discrete Algorithms. 2012.

J. D. HISER, A. NGUYEN-TUONG, M. Co, M. HALL, and J. W. DAVIDSON. “ILR:
Where'd My Gadgets Go?” In: IEEE Symposium on Security and Privacy. 2012.

T. KIM, M. PEINADO, and G. MAINAR-RUIZ. “StealthMem: System-level Protec-
tion Against Cache-based Side Channel Attacks in the Cloud.” In: 215t USENIX
Security Symposium. 2012.

R. WARTELL, V. MOHAN, K. W. HAMLEN, and Z. LIN. “Binary Stirring: Self-
randomizing Instruction Addresses of Legacy x86 Binary Code.” In: ACM Con-
ference on Computer and Communications Security (CCS). 2012.

P. WILLIAMS and R. SION. “Round-optimal Access Privacy on Outsourced
Storage.” In: ACM Conference on Computer and Communications Security (CCS).
2012.

P. CHEN, R. WU, and B. Mao. “JITSafe: A Framework Against Just-in-time
Spraying Attacks.” In: IET Information Security (2013).

L. DAvI, A. DMITRIENKO, S. NURNBERGER, and A.-R. SADEGHI. “Gadge Me If
You Can - Secure and Efficient Ad-hoc Instruction-Level Randomization for x86
and ARM.” In: ACM Symposium on Information, Computer and Communications
Security. 2013.

A. GUPTA, S. KERR, M. S. KIRKPATRICK, and E. BERTINO. “Marlin: A Fine
Grained Randomization Approach to Defend against ROP Attacks.” In: Interna-
tional Conference on Network and System Security. 2013.

A. HOMESCU, S. BRUNTHALER, P. LARSEN, and M. FRANZ. “Librando: Trans-
parent Code Randomization For Just-in-time Compilers.” In: ACM Conference
on Computer and Communications Security (CCS). 2013.

C. L1u, M. HICKS, and E. SHI. “Memory Trace Oblivious Program Execution.”
In: IEEE Computer Security Foundations Symposium. 2013.

M. MAAS, E. LOVE, E. STEFANOV, M. TIWARI, E. SHI, K. ASANOVIC, J. KUBIA-
TOWICZ, and D. SONG. “Phantom: Practical Oblivious Computation in a Secure
Processor.” In: ACM Conference on Computer and Communications Security (CCS).
2013.

M. A. PATHAK, B. RAJ, S. RANE, and P. SMARAGDIS. “Privacy-Preserving Speech
Processing: Cryptographic and String-Matching Frameworks Show Promise.”
In: IEEE Signal Processing Magazine (2013).

K. Z. SNOW, L. DAVI, A. DMITRIENKO, C. LIEBCHEN, F. MONROSE, and A.-R.
SADEGHI. “Just-In-Time Code Reuse: On the Effectiveness of Fine-Grained
Address Space Layout Randomization.” In: IEEE Symposium on Security and
Privacy. 2013.

29

30

BIBLIOGRAPHY

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

(60]

(61]

[62]

(63]

(64]

[65]

[66]

[67]

(68]

E. STEFANOV, M. VAN DIJK, E. SHI, C. FLETCHER, L. REN, X. YU, and S. DEVADAS.
“Path ORAM: An Extremely Simple Oblivious RAM Protocol.” In: ACM Conference
on Computer and Communications Security (CCS). 2013.

C. ZHANG, T. WEI, Z. CHEN, L. DUAN, L. SZEKERES, S. MCCAMANT, D. SONG,
and W. Zou. “Practical Control Flow Integrity and Randomization for Binary
Executables.” In: IEEE Symposium on Security and Privacy. 2013.

M. ZHANG and R. SEKAR. “Control Flow Integrity for COTS Binaries.” In: 22nd
USENIX Security Symposium. 2013.

M. BACKES, T. HOLZ, B. KOLLENDA, P. KOPPE, S. NURNBERGER, and J. PEWNY.
“You Can Run but You Can’t Read: Preventing Disclosure Exploits in Executable
Code.” In: ACM Conference on Computer and Communications Security (CCS).
2014.

A. BITTAU, A. BELAY, A. MASHTIZADEH, D. MAZIERES, and D. BONEH. “Hacking
Blind.” In: IEEE Symposium on Security and Privacy. 2014.

L. DAVL, A.-R. SADEGHI, D. LEHMANN, and F. MONROSE. “Stitching the Gadgets:
On the Ineffectiveness of Coarse-grained Control-flow Integrity Protection.”
In: 23rd USENIX Security Symposium. 2014.

E. GOKTAS, E. ATHANASOPOULOS, H. BoS, and G. PORTOKALIDIS. “Out of
Control: Overcoming Control-flow Integrity.” In: IEEE Symposium on Security
and Privacy. 2014.

B. N1U and G. TAN. “RocK]JIT: Securing Just-In-Time Compilation Using Modular
Control-Flow Integrity.” In: ACM Conference on Computer and Communications
Security (CCS). 2014.

C. TICE, T. ROEDER, P. COLLINGBOURNE, S. CHECKOWAY, U. ERLINGSSON, L.
L0ZANO, and G. PIKE. “Enforcing Forward-edge Control-flow Integrity in GCC
& LLVM.” In: 23rd USENIX Security Symposium. 2014.

ARM. TrustZone. URL: https://developer.arm.com/ip-products/security-
ip/trustzone.

M. ATHANASAKIS, E. ATHANASOPOULOS, M. POLYCHRONAKIS, G. PORTOKA-
LIDIS, and S. IOANNIDIS. “The Devil is in the Constants: Bypassing Defenses in
Browser JIT Engines.” In: Network and Distributed System Security Symposium
(NDSS). 2015.

J. CORBET. Memory Protection Keys. 2015. URL: https://lwn.net/Articles/
643797/.

S. CRANE, A. HOMESCU, S. BRUNTHALER, P. LARSEN, and M. FRANZ. “Thwarting
Cache Side-Channel Attacks Through Dynamic Software Diversity.” In: Network
and Distributed System Security Symposium (NDSS). 2015.

S. CRANE, C. LIEBCHEN, A. HOMESCU, L. DAVI, P. LARSEN, A.-R. SADEGHI,
S. BRUNTHALER, and M. FRANZ. “Readactor: Practical Code Randomization
Resilient to Memory Disclosure.” In: 36th IEEE Symposium on Security and
Privacy. 2015.

J. GIONTA, W. ENCK, and P. NING. “HideM: Protecting the Contents of Userspace
Memory in the Face of Disclosure Vulnerabilities.” In: 5th ACM Conference on
Data and Application Security and Privacy (CODASPY). 2015.

A.HOMESCU, T. JACKSON, S. CRANE, S. BRUNTHALER, P. LARSEN, and M. FRANZ.
“Large-scale Automated Software Diversity—Program Evolution Redux.” In:
IEEE Transactions on Dependable and Secure Computing (2015).

P. KOEBERL, V. PHEGADE, A. RAJAN, T. SCHNEIDER, S. SCHULZ, and M. ZH-
DANOVA. “Time to Rethink: Trust Brokerage Using Trusted Execution Environ-
ments.” In: Trust and Trustworthy Computing (TRUST). 2015.

G. KOPPEN. Include SelfRando Patches Into Our Hardened Builds. 2015. URL: https:
//gitlab.torproject.org/legacy/trac/-/issues/17406.

R. KUMARESAN, T. MORAN, and I. BENTOV. “How To Use Bitcoin To Play Decen-
tralized Poker.” In: ACM Conference on Computer and Communications Security
(CCS). 2015.

https://developer.arm.com/ip-products/security-ip/trustzone
https://developer.arm.com/ip-products/security-ip/trustzone
https://lwn.net/Articles/643797/
https://lwn.net/Articles/643797/
https://gitlab.torproject.org/legacy/trac/-/issues/17406
https://gitlab.torproject.org/legacy/trac/-/issues/17406

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

(80]

(81]

[82]

(83]

[84]

[85]

(86]

[87]

(88]

OTHER REFERENCES

C. L1U, A. HARRIS, M. MAAS, M. HICKS, M. TIWARI, and E. SHI. “Ghostrider:
a Hardware-Software System for Memory Trace Oblivious Computation.” In:
ACM SIGARCH Computer Architecture News (2015).

J. DE Moo1j. W~X JIT-code Enabled in Firefox. 2015. URL: https://jandemooij .
nl/blog/2015/12/29/wx- jit-code-enabled-in-firefox.

0. OHRIMENKO, M. COSTA, C. FOURNET, C. GKANTSIDIS, M. KOHLWEISS, and
D. SHARMA. “Observing and Preventing Leakage in MapReduce.” In: ACM
Conference on Computer and Communications Security (CCS). 2015.

PAX TEAM. RAP: RIP ROP. 2015. URL: https://pax.grsecurity.net/docs/
PaXTeam-H2HC15-RAP-RIP-ROP. pdf.

M. PAYER, A. BARRESI, and T. R. GROSS. “Fine-grained Control-flow Integrity
Through Binary Hardening.” In: International Conference on Detection of Intru-
sions and Malware, and Vulnerability Assessment. 2015.

A. RANE, C. LIN, and M. TIWARI. “Raccoon: Closing Digital Side-channels
Through Obfuscated Execution.” In: 24th USENIX Security Symposium. 2015.

L. REN, C. W. FLETCHER, A. KWON, E. STEFANOV, E. SHI, M. VAN DIJK, and
S. DEVADAS. “Constants Count: Practical Improvements to Oblivious RAM.” In:
24thUSENIX Security Symposium. 2015.

C. SONG, C. ZHANG, T. WANG, W. LEE, and D. MELSKI. “Exploiting and Pro-
tecting Dynamic Code Generation.” In: Network and Distributed System Security
Symposium (NDSS). 2015.

V. VAN DER VEEN, D. ANDRIESSE, E. GOKTAS, B. GRAS, L. SAMBUC, A. SLOWIN-
SKA, H. Bos, and C. GIUFFRIDA. “Practical Context-Sensitive CFL.” In: ACM
Conference on Computer and Communications Security (CCS). 2015.

Y. Xu, W. Cui, and M. PEINADO. “Controlled-Channel Attacks: Deterministic
Side Channels for Untrusted Operating Systems.” In: IEEE Symposium on Security
and Privacy. 2015.

K. BRADEN, S. CRANE, L. DAVI, M. FRANZ, P. LARSEN, C. LIEBCHEN, and A.-R.
SADEGHLI. “Leakage-Resilient Layout Randomization for Mobile Devices.” In:
Network and Distributed System Security Symposium (NDSS). 2016.

V. COSTAN and S. DEVADAS. Intel SGX Explained. Tech. rep. Cryptology ePrint
Archive, 2016. URL: https://eprint.iacr.org/2016/086.pdf.

V. COSTAN, I. A. LEBEDEV, and S. DEVADAS. “Sanctum: Minimal Hardware
Extensions for Strong Software Isolation.” In: 26th USENIX Security Symposium.
2016.

X. GE, N. TALELE, M. PAYER, and T. JAEGER. “Fine-Grained Control-Flow In-
tegrity for Kernel Software.” In: IEEE European Symposium on Security and Pri-
vacy (EuroS&P). 2016.

G. GONG. Pwn a Nexus Device With a Single Vulnerability. 2016. URL: https://
web.archive.org/web/20210307205130/https://cansecwest.com/slides/
2016/CSW2016%5C_Gong%s5C_Pwn%5C_a%5C_Nexus%5C_device%s5C_with%5C_a%
5C_single%s5C_vulnerability.pdf.

M. HOLMAN. Out-of-process JIT Support. 2016. URL: https: //github. com/
Microsoft/ChakraCore/pull/1561.

INTEL. Software Guard Extensions (SGX). URL: https : / /www . intel . com/
content/www/us/en/develop/topics/software-guard-extensions.html.

K. A. KUGUK, A. PAVERD, A. MARTIN, N. ASOKAN, A. SIMPSON, and R. ANKELE.
“Exploring the Use of Intel SGX for Secure Many-Party Applications.” In: System
Software for Trusted Execution (SysTEX). 2016.

R. KUMARESAN and I. BENTOV. “Amortizing Secure Computation with Penal-
ties.” In: ACM Conference on Computer and Communications Security (CCS). 2016.

R. KUMARESAN, V. VAIKUNTANATHAN, and P. N. VASUDEVAN. “Improvements
to Secure Computation with Penalties.” In: ACM Conference on Computer and
Communications Security (CCS). 2016.

31

https://jandemooij.nl/blog/2015/12/29/wx-jit-code-enabled-in-firefox
https://jandemooij.nl/blog/2015/12/29/wx-jit-code-enabled-in-firefox
https://pax.grsecurity.net/docs/PaXTeam-H2HC15-RAP-RIP-ROP.pdf
https://pax.grsecurity.net/docs/PaXTeam-H2HC15-RAP-RIP-ROP.pdf
https://eprint.iacr.org/2016/086.pdf
https://web.archive.org/web/20210307205130/https://cansecwest.com/slides/2016/CSW2016%5C_Gong%5C_Pwn%5C_a%5C_Nexus%5C_device%5C_with%5C_a%5C_single%5C_vulnerability.pdf
https://web.archive.org/web/20210307205130/https://cansecwest.com/slides/2016/CSW2016%5C_Gong%5C_Pwn%5C_a%5C_Nexus%5C_device%5C_with%5C_a%5C_single%5C_vulnerability.pdf
https://web.archive.org/web/20210307205130/https://cansecwest.com/slides/2016/CSW2016%5C_Gong%5C_Pwn%5C_a%5C_Nexus%5C_device%5C_with%5C_a%5C_single%5C_vulnerability.pdf
https://web.archive.org/web/20210307205130/https://cansecwest.com/slides/2016/CSW2016%5C_Gong%5C_Pwn%5C_a%5C_Nexus%5C_device%5C_with%5C_a%5C_single%5C_vulnerability.pdf
https://github.com/Microsoft/ChakraCore/pull/1561
https://github.com/Microsoft/ChakraCore/pull/1561
https://www.intel.com/content/www/us/en/develop/topics/software-guard-extensions.html
https://www.intel.com/content/www/us/en/develop/topics/software-guard-extensions.html

32

BIBLIOGRAPHY

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

M. L1pP, D. GRUSS, R. SPREITZER, C. MAURICE, and S. MANGARD. “ARMaged-
don: Cache attacks on mobile devices.” In: 25th USENIX Security Symposium.
2016.

F. LIu, Q. GE, Y. YAROM, F. MCKEEN, C. R0ZAS, G. HEISER, and R. B. LEE. “CAT-
alyst: Defeating Last-Level Cache Side Channel Attacks in Cloud Computing.”
In: IEEE International Symposium on High Performance Computer Architecture
(HPCA). 2016.

F. L1u, H. WU, K. MAI, and R. B. LEE. “Newcache: Secure Cache Architec-
ture Thwarting Cache Side-Channel Attacks.” In: International Symposium on
Microarchitecture (MICRO). 2016.

0. OHRIMENKO, F. SCHUSTER, C. FOURNET, A. MEHT, S. NOWOZIN, K. VASWANI,
and M. COSTA. “Oblivious Multi-Party Machine Learning on Trusted Proces-
sors.” In: 25th USENIX Security Symposium. 2016.

V. VAN DER VEEN, E. GOKTAS, M. CONTAG, A. PAWOLOSKI, X. CHEN, S. RAWAT,
H. Bos, T. HOLZ, E. ATHANASOPOULOS, and C. GIUFFRIDA. “A Tough Call: Mit-
igating Advanced Code-reuse Attacks at the Binary Level.” In: IEEE Symposium
on Security and Privacy. 2016.

Y. WANG, A. FERRAIUOLO, D. ZHANG, A. C. MYERS, and G. E. SUH. “SecDCP:
Secure Dynamic Cache Partitioning for Efficient Timing Channel Protection.”
In: Annual Design Automation Conference (DAC). 2016.

Z.ZHOoU, M. K. REITER, and Y. ZHANG. “A Software Approach to Defeating
Side Channels in Last-Level Caches.” In: ACM Conference on Computer and
Communications Security (CCS). 2016.

AMD. Secure Encrypted Virtualization (SEV). URL: https://developer.amd.
com/sev/.

R. BAHMANI, M. BARBOSA, F. BRASSER, B. PORTELA, A.-R. SADEGHI, G. SCERRI,
and B. WARINSCHI. “Secure Multiparty Computation from SGX.” In: Financial
Cryptography and Data Security (FC). 2017.

F. BRASSER, U. MULLER, A. DMITRIENKO, K. KOSTIAINEN, S. CAPKUN, and
A.-R. SADEGHI. “Software Grand Exposure: SGX Cache Attacks Are Practical.”
In: 11th USENIX Workshop on Offensive Technologies (WOOT). 2017.

N. BUROW, S. A. CARR, J. NASH, P. LARSEN, M. FRANZ, S. BRUNTHALER, and
M. PAYER. “Control-flow Integrity: Precision, Security, and Performance.” In:
ACM Comput. Surv. (2017).

S. CHEN, X. ZHANG, M. K. REITER, and Y. ZHANG. “Detecting Privileged Side-
Channel Attacks in Shielded Execution with Déja Vu.” In: ACM Asia Conference
on Computer and Communications Security (ASIACCS). 2017.

G. DESSOUKY, E. STAPF, P. MAHMOODY, A. GRULER, and A.-R. SADEGHI.
“Chunked-Cache: On-Demand and Scalable Cache Isolation for Security
Architectures.” In: ACM Conference on Computer and Communications Security
(CCS). 2017.

R. DING, C. QIAN, C. SONG, B. HARRIS, T. KiM, and W. LEE. “Efficient Protection
of Path-Sensitive Control Security.” In: 26th USENIX Security Symposium. 2017.

M. ELSABAGH, D. FLECK, and A. STAVROU. “Strict Virtual Call Integrity Checking
for C++ Binaries.” In: ACM Asia Conference on Computer and Communications
Security. 2017.

B. FUHRY, R. BAHMANI, F. BRASSER, F. HAHN, F. KERSCHBAUM, and A.-R.
SADEGHI. “HardIDX: Practical and Secure Index with SGX.” In: Conference on
Data and Applications Security and Privacy (DBSec). 2017.

C. GLACKIN, G. CHOLLET, N. DUGAN, N. CANNINGS, J. WALL, S. TAHIR, L. G. Ray,
and M. RAJARAJAN. “Privacy Preserving Encrypted Phonetic Search of Speech
Data.” In: International Conference on Acoustics, Speech and Signal Processing
(ICASSP). 2017.

J. GOTZFRIED, M. ECKERT, S. SCHINZEL, and T. MULLER. “Cache Attacks on
Intel SGX.” In: European Workshop on Systems Security. 2017.

https://developer.amd.com/sev/
https://developer.amd.com/sev/

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

OTHER REFERENCES

D. GRUSS, J. LETTNER, F. SCHUSTER, O. OHRIMENKO, I. HALLER, and M. COSTA.
“Strong and Efficient Cache Side-Channel Protection using Hardware Transac-
tional Memory.” In: 26th USENIX Security Symposium. 2017.

J. L1u, M. JuuTl, V. LU, and N. ASOKAN. “Oblivious Neural Network Predic-
tions via MiniONN Transformations.” In: ACM Conference on Computer and
Communications Security (CCS). 2017.

G. MAISURADZE, M. BACKES, and C. Rossow. “Dachshund: Digging for and
Securing Against (non-) Blinded Constants in JIT Code.” In: Network and Dis-
tributed System Security Symposium (NDSS). 2017.

A. MILLER, I. BENTOV, R. KUMARESAN, and P. MCCORRY. Sprites: Payment
Channels that Go Faster than Lightning. Tech. rep. arXiv:1702.05812, 2017.

M. MILLER. Mitigating Arbitrary Native Code Execution in Microsoft Edge. 2017.
URL: https://blogs.windows . com/msedgedev/2017/02/23/mitigating-
arbitrary-native- code-execution/.

A. MOGHIMI, G. IRAZOQUI, and T. EISENBARTH. “CacheZoom: How SGX Ampli-
fies The Power of Cache Attacks.” In: International Conference on Cryptographic
Hardware and Embedded Systems. 2017.

A. PAWLOWSKI, M. CONTAG, V. VAN DER VEEN, C. OUWEHAND, T. HoLz, H. Bos,
E. ATHANASOPOULOS, and C. GIUFFRIDA. “MARX: Uncovering Class Hierar-
chies in C++ Programs.” In: Network and Distributed System Security Symposium
(NDSS). 2017.

J. POON and V. BUTERIN. Plasma: Scalable Autonomous Smart Contracts. White
paper. 2017.

M. SCHWARZ, S. WEISER, D. GRUSS, C. MAURICE, and S. MANGARD. “Malware
Guard Extension: Using SGX to Conceal Cache Attacks.” In: International Con-
ference on Detection of Intrusions and Malware, and Vulnerability Assessment. 2017.

J. SEO, B. LEE, S. KIM, M.-W. SHIH, 1. SHIN, D. HAN, and T. KIM. “SGX-Shield:
Enabling Address Space Layout Randomization for SGX Programs.” In: Network
and Distributed System Security Symposium (NDSS). 2017.

M.-W. SHIH, S. LEE, T. KiM, and M. PEINADO. “T-SGX: Eradicating Controlled-
Channel Attacks Against Enclave Programs.” In: Network and Distributed System
Security Symposium (NDSS). 2017.

R. SINHA, S. RAJAMANI, and S. A. SESHIA. “A Compiler and Verifier for Page
Access Oblivious Computation.” In: 11th Joint Meeting on Foundations of Software
Engineering - ESEC/FSE. 2017.

J. VAN BULCK, N. WEICHBRODT, R. KAPITZA, F. PIESSENS, and R. STRACKX.
“Telling Your Secrets without Page Faults: Stealthy Page Table-Based Attacks
on Enclaved Execution.” In: 26th USENIX Security Symposium. 2017.

P. ALCORN. Intel Unveils Cascade Lake, In-Silicon Spectre and Meltdown Mitigations.
2018. URL: https://www. tomshardware. com/news/intel - cascade - lake -
details-spectre-meltdown,37674.html.

S. Cul, S. BELGUITH, M. ZHANG, M. R. ASGHAR, and G. RUSSELLO. “Preserving
Access Pattern Privacy in SGX-Assisted Encrypted Search.” In: 27th International
Conference on Computer Communication and Networks (ICCCN). 2018.

R. M. FARKHANI, S. JAFARI, S. ARSHAD, W. ROBERTSON, E. KIRDA, and H.
OKHRAVI. “On the Effectiveness of Type-based Control Flow Integrity.” In:
Annual Computer Security Applications Conference (ACSAC). 2018.

R. GAWLIK and T. HOLZ. “SoK: Make JIT-spray Great Again.” In: 12th USENIX
Workshop on Offensive Technologies (WOOT). 2018.

B. GRAS, K. RAazAVI, H. BoS, and C. GIUFFRIDA. “Translation Leak-aside Buffer:
Defeating Cache Side-channel Protections with TLB Attacks.” In: 27th USENIX
Security Symposium. 2018.

H. Hu, C. QIAN, C. YAGEMANN, S. P. H. CHUNG, W. R. HARRIS, T. KIM, and
W. LEE. “Enforcing Unique Code Target Property for Control-Flow Integrity.”
In: ACM Conference on Computer and Communications Security (CCS). 2018.

33

https://blogs.windows.com/msedgedev/2017/02/23/mitigating-arbitrary-native-code-execution/
https://blogs.windows.com/msedgedev/2017/02/23/mitigating-arbitrary-native-code-execution/
https://www.tomshardware.com/news/intel-cascade-lake-details-spectre-meltdown,37674.html
https://www.tomshardware.com/news/intel-cascade-lake-details-spectre-meltdown,37674.html

34

BIBLIOGRAPHY

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

C. JUVEKAR, V. VAIKUNTANATHAN, and A. CHANDRAKASAN. “GAZELLE: A Low
Latency Framework for Secure Neural Network Inference.” In: 27th USENIX
Security Symposium. 2018.

H. A. KALODNER, S. GOLDFEDER, X. CHEN, S. M. WEINBERG, and E. W. FEL-
TEN. “Arbitrum: Scalable, Private Smart Contracts.” In: 27th USENIX Security
Symposium. 2018.

H. Koo, Y. CHEN, L. LU, V. P. KEMERLIS, and M. POLYCHRONAKIS. “Compiler-
Assisted Code Randomization.” In: 39th IEEE Symposium on Security and Privacy.
2018.

P. MUNTEAN, M. FISCHER, G. TAN, Z. LIN, J. GROSSKLAGS, and C. ECKERT.
“TCFI: Type-Assisted Control Flow Integrity for x86-64 Binaries.” In: Interna-
tional Symposium on Research in Attacks, Intrusions, and Defenses. 2018.

0. OLEKSENKO, B. TRACH, R. KRAHN, M. SILBERSTEIN, and C. FETZER. “Varys:
Protecting SGX Enclaves from Practical Side-Channel Attacks.” In: USENIX
Annual Technical Conference (ATC). 2018.

M. S. R1AZI, C. WEINERT, O. TKACHENKO, E. M. SONGHORI, T. SCHNEIDER,
and F. KOUSHANFAR. “Chameleon: A Hybrid Secure Computation Framework
for Machine Learning Applications.” In: ACM Asia Conference on Computer and
Communications Security (ASIACCS). 2018.

B. D. ROUHANI, M. S. RiAzI, and F. KOUSHANFAR. “DeepSecure: Scalable
Provably-Secure Deep Learning.” In: Annual Design Automation Conference
(DAC). 2018.

D. TRILLA, C. HERNANDEZ, J. ABELLA, and F. J. CAZORLA. “Cache Side-channel
Attacks and Time-predictability in High-performance Critical Real-time Sys-
tems.” In: Annual Design Automation Conference (DAC). 2018.

J. VAN BULCK, M. MINKIN, O. WEISSE, D. GENKIN, B. KASIKCI, F. PIESSENS,
M. SILBERSTEIN, T. F. WENISCH, Y. YAROM, and R. STRACKX. “Foreshadow:
Extracting the Keys to the Intel SGX Kingdom with Transient Out-of-Order
Execution.” In: 27th USENIX Security Symposium. 2018.

A. AHMAD, B. JOE, Y. X140, Y. ZHANG, I. SHIN, and B. LEE. “Obfuscuro: A
Commodity Obfuscation Engine on Intel SGX.” In: Network and Distributed
System Security Symposium (NDSS). 2019.

R. CHENG, F. ZHANG,]J. K0S, W. HE, N. HYNES, N. JOHNSON, A. JUELS, A.
MILLER, and D. SONG. “Ekiden: A Platform for Confidentiality-Preserving,
Trustworthy, and Performant Smart Contracts.” In: IEEE European Symposium
on Security and Privacy (EuroS&P). 2019.

INTEL. INTEL-SA-00233: Microarchitectural Data Sampling Advisory. 2019. URL:
https://www.intel.com/content/www/us/en/security- center/advisory/
intel-sa-00233.html.

M. MILLER. Trends, Challences, and Stratecic Shifts in the
Software Vulnerability Mitication Landscape. BlueHat IL.
2019. URL: https : / / github . com / microsoft / MSRC - Security -
Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-
%20BlueHatIL%20 - %20Trends%2C%20challenge%2(C%20and%20shifts%20in%
20software%20vulnerability%s20mitigation.pdf.

P. MUNTEAN, M. NEUMAYER, Z. LIN, G. TAN, J. GROSSKLAGS, and C. ECKERT.
“Analyzing Control Flow Integrity with LLVM-CF1.” In: Annual Computer Security
Applications Conference (ACSAC). 2019.

M. ORENBACH, Y. MICHALEVSKY, C. FETZER, and M. SILBERSTEIN. “CoSMIX:
A Compiler-based System for Secure Memory Instrumentation and Execution
in Enclaves.” In: USENIX Annual Technical Conference (ATC). 2019.

M. J. REED. New Confidential Computing Solutions Emerge on the Hyperledger
Avalon Trusted Compute Framework. 2019. URL: https : //www . intel . com/
content/www/us/en/developer/articles/technical/new- confidential-
computing - solutions - emerge - on - the - hyperledger - avalon - trusted -
compute.html.

https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00233.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00233.html
https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://www.intel.com/content/www/us/en/developer/articles/technical/new-confidential-computing-solutions-emerge-on-the-hyperledger-avalon-trusted-compute.html
https://www.intel.com/content/www/us/en/developer/articles/technical/new-confidential-computing-solutions-emerge-on-the-hyperledger-avalon-trusted-compute.html
https://www.intel.com/content/www/us/en/developer/articles/technical/new-confidential-computing-solutions-emerge-on-the-hyperledger-avalon-trusted-compute.html
https://www.intel.com/content/www/us/en/developer/articles/technical/new-confidential-computing-solutions-emerge-on-the-hyperledger-avalon-trusted-compute.html

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

OTHER REFERENCES

M. WERNER, T. UNTERLUGGAUER, L. GINER, M. SCHWARZ, D. GRUSS, and S.
MANGARD. “ScatterCache: Thwarting Cache Attacks via Cache Set Randomiza-
tion.” In: 28th USENIX Security Symposium. 2019.

K. MURDOCK, D. OSWALD, F. D. GARCIA, J. VAN BULCK, D. GRUSS, and F.
PIESSENS. “Plundervolt: Software-based Fault Injection Attacks Against In-
tel SGX.” In: IEEE Symposium on Security and Privacy. 2020.

M. ORENBACH, A. BAUMANN, and M. SILBERSTEIN. “Autarky: Closing Con-
trolled Channels with Self-Paging Enclaves.” In: 15th European Conference on
Computer Systems. 2020.

T. PARK, K. DHONDT, D. GENS, Y. NA, S. VOLCKAERT, and M. FRANZ. “NoJITsu:
Locking Down JavaScript Engines.” In: Network and Distributed System Security
Symposium (NDSS). 2020.

S. PRIYADARSHAN, H. NGUYEN, and R. SEKAR. “Practical Fine-Grained Binary
Code Randomization.” In: Annual Computer Security Applications Conference
(ACSAC). 2020.

MITRE CORPORATION. 2021 CWE Top 25 Most Dangerous Software Weaknesses.
2021. URL: https://cwe.mitre.org/top25/archive/2021/2021_cwe_top25.
html.

G. SAILESHWAR and M. QURESHI. “MIRAGE: Mitigating Conflict-Based Cache
Attacks with a Practical Fully-Associative Design.” In: 30th USENIX Security
Symposium. 2021.

S. OzkKAN. Browse CVE Vulnerabilities By Date. 2022. URL:
https://www.cvedetails.com/browse-by-date.php.

35

https://cwe.mitre.org/top25/archive/2021/2021_cwe_top25.html
https://cwe.mitre.org/top25/archive/2021/2021_cwe_top25.html
https://www.cvedetails.com/browse-by-date.php

LIST OF ACRONYMS

AIR Average Indirect-target Reduction
ASLR Address Space Layout Randomization
CAT (Intel) Cache Allocation Technology
CFG Control-Flow Graph

CFI Control-Flow Integrity

DFI Data-Flow Integrity

IPC Inter-Process Communication

JIT Just-In-Time

LLC Last-Level Cache

MPC Secure Multi-Party Computation
MPK (Intel) Memory Protection Keys
ORAM Oblivious RAM

ROP Return-Oriented Programming

RAM Random-Access Memory

SEV (AMD) Secure Encrypted Virtualization
SFI Software Fault Isolation

SGX (Intel) Software Guard Extensions
SMT Simultaneous Multi-Threading

TDX (Intel) Trust Domain Extensions

TEE Trusted Execution Environment

TSX (Intel) Transactional Synchronization Extensions
TZ (ARM) TrustZone

ERKLARUNG GEMAR §9 DER PROMOTIONSORDNUNG

Hiermit versichere ich, die vorliegende Dissertation selbststdndig und nur
unter Verwendung der angegebenen Quellen und Hilfsmittel verfasst zu ha-
ben. Alle Stellen, die aus Quellen entnommen wurden, sind als solche kennt-
lich gemacht. Diese Arbeit hat in gleicher oder dhnlicher Form noch keiner
Priifungsbehorde vorgelegen.

Darmstadt, Marz 2022

Tommaso Frassetto

39

Part I1

PUBLICATIONS PART OF
THIS CUMULATIVE DISSERTATION

This part contains a copy of the proceedings version of every publication that
composes this cumulative dissertation.

The paper “Selfrando: Securing the Tor Browser Against De-anonymization
Exploits” [1], which was authored by M. CONTI, S. CRANE, T. FRASSETTO,
A. HOMESCU, G. KOPPEN, P. LARSEN, C. LIEBCHEN, M. PERRY, and A.-R.
SADEGHI, and was published at PETS 2016 (CORE2021 rank: A, CORE2014 rank:
B), starts on page 45.

The paper “JITGuard: Hardening Just-in-time Compilers with SGX” [2], which
was authored by T. FRASSETTO, D. GENS, C. LIEBCHEN, and A.-R. SADEGH],
and was published at ACM CCS 2017 (CORE2021 rank: Ax), starts on page 61.

The paper “VoiceGuard: Secure and Private Speech Processing” [3], which was
authored by F. BRASSER, T. FRASSETTO, K. RIEDHAMMER, A.-R. SADEGH]I,
T. SCHNEIDER, and C. WEINERT, and was published at Interspeech 2018
(CORE2021 rank: A), starts on page 77.

The paper “DR.SGX: Automated and Adjustable Side-Channel Protection for SGX
using Data Location Randomization” [4], which was authored by F. BRASSER, S.
CAPKUN, A. DMITRIENKO, T. FRASSETTO, K. KOSTIAINEN, and A.-R. SADEGH],
and was published at ACSAC 2019 (CORE2021 rank: national USA, CORE2018
rank: A), starts on page 83.

The paper “FastKitten: Practical Smart Contracts on Bitcoin” [5], which was
authored by P. DAS, L. ECKEY, T. FRASSETTO, D. GENS, K. HOSTAKOVA, P.
JAUERNIG, S. FAUST, and A.-R. SADEGHI, and was published at USENIX Secu-
rity 2019 (CORE2021 rank: Ax), starts on page 97.

The paper “HybCache: Hybrid Side-Channel-Resilient Caches for Trusted Execution
Environments” [6], which was authored by G. DESSOUKY, T. FRASSETTO, and
A.-R. SADEGH], and was published at USENIX Security 2020 (CORE2021 rank:
Ax), starts on page 115.

The paper “CFInsight: A Comprehensive Metric for CFI Policies” [7], which was
authored by T. FRASSETTO, P. JAUERNIG, D. KOISSER, and A.-R. SADEGHI, and
was published at NDSS 2022 (CORE2021 rank: Ax), starts on page 133.

43

Mauro Conti, Stephen Crane, Tommaso Frassetto, Andrei Homescu, Georg Koppen, Per Larsen,
Christopher Liebchen, Mike Perry, and Ahmad-Reza Sadeghi

Selfrando: Securing the Tor Browser against
De-anonymization Exploits

Abstract: Tor is a well-known anonymous communica-
tion system used by millions of users, including jour-
nalists and civil rights activists all over the world. The
Tor Browser gives non-technical users an easy way to
access the Tor Network. However, many government or-
ganizations are actively trying to compromise Tor not
only in regions with repressive regimes but also in the
free world, as the recent FBI incidents clearly demon-
strate. Exploiting software vulnerabilities in general,
and browser vulnerabilities in particular, constitutes a
clear and present threat to the Tor software. The Tor
Browser shares a large part of its attack surface with the
Firefox browser. Therefore, Firefox vulnerabilities (even
patched ones) are highly valuable to attackers trying to
monitor users of the Tor Browser.

In this paper, we present selfrando—an enhanced and
practical load-time randomization technique for the Tor
Browser that defends against exploits, such as the one
FBI allegedly used against Tor users. Our solution sig-
nificantly improves security over standard address space
layout randomization (ASLR) techniques currently used
by Firefox and other mainstream browsers. Moreover,
we collaborated closely with the Tor Project to ensure
that selfrando is fully compatible with AddressSanitizer
(ASan), a compiler feature to detect memory corrup-
tion. ASan is used in a hardened version of Tor Browser
for test purposes. The Tor Project decided to include
our solution in the hardened releases of the Tor Browser,
which is currently undergoing field testing.

Keywords: code-

randomization, privacy-oriented software, Tor Browser.

De-anonymization exploits,

DOI 10.1515/popets-2016-0050
Received 2016-02-29; revised 2016-06-02; accepted 2016-06-02.

Mauro Conti: Universita degli Studi di Padova,

E-mail: conti@math.unipd.it

Stephen Crane: Immunant, Inc., E-mail: sjc@immunant.com
Tommaso Frassetto: CASED /Technische Universitdt Darm-
stadt, Germany, E-mail: tommaso.frassetto@trust.cased.de
Andrei Homescu: Immunant, Inc.,

E-mail: ah@immunant.com

Georg Koppen: The Tor Project, E-mail: gk@torproject.org
Per Larsen: Immunant, Inc., E-mail: perl@Qimmunant.com

1 Introduction

The Tor Project provides a suite of free software and
a worldwide network designed to facilitate anonymous
information exchange and to prevent surveillance and
fingerprinting of these interactions. The Tor network
is open to anyone and widely used by civil rights ac-
tivists, whistleblowers, journalists, citizens of oppressive
regimes, etc. Many sensitive websites, including the late
Silk Road black market, are only accessible over Tor.
Consequently, the Tor Network is continually facing de-
anonymization attacks by law enforcement, intelligence
agencies, and foreign nation states. A de-anonymization
attack aims to disclose information, such as the identity
or the location, of an anonymous user. While many de-
anonymization attacks rely on weaknesses in the net-
work protocol, they often require that adversaries con-
trol a large number of Tor nodes [26] or only work in a
lab environment [39].

An alternative and practical way to de-anonymize
Tor users is to exploit security vulnerabilities in the soft-
ware used to access the Tor network. The most common
way to access Tor is via the Tor Browser (TB) [73],
which includes a pre-configured Tor client. Since TB is
based on Mozilla’s Firefox browser, they share a large
part of their attack surfaces. In 2013, the Federal Bu-
reau of Investigation (FBI) exploited a known software
vulnerability in Firefox [71] to de-anonymize Tor users
that had not updated to the most recent version of
TB [27, 57, 74]. Due to the success of this operation,
exploit brokers [79] (and, presumably, governments and
criminals) are currently soliciting exploits for the TB.
In early 2016, it was confirmed that the FBI contin-
ues to monitor the Tor network, this time using a de-

Christopher Liebchen: CASED /Technische

Universitdt Darmstadt, Germany,

E-mail: christopher.liebchen@trust.cased.de

Mike Perry: The Tor Project,

E-mail: mikeperry@torproject.org

Ahmad-Reza Sadeghi: CASED/Technische Universitét
Darmstadt, Germany, E-mail: ahmad.sadeghi@trust.cased.de

45

anonymization attack devised by Carnegie Mellon Uni-

versity researchers [19].

The Open Technology Fund commissioned a study
on current and future hardening efforts to reduce the
attack surface of the TB [58]. One of the recommenda-
tions was to use compiler techniques to detect mem-
ory corruption (buffer overflow, use-after-free, unini-
tialized variables, etc.) such as the AddressSanitizer
(ASan) feature [61]. Another key recommendation was
to use address space layout randomization (ASLR) to
prevent exploitation of memory corruption vulnerabili-
ties. While ASan imposes a high runtime overhead [61],
ASLR is very efficient. However, ASLR was recom-
mended because it is widely supported by compilers
and operating systems, not for its security properties. In
fact, the shortcomings of ASLR are well documented in
the academic literature [8, 16, 33, 62, 64, 68]. ASLR can
be made significantly stronger by randomizing not just
the base address of modules but also the code inside each
module. Address space layout permutation (ASLP) [44],
for instance, randomizes the location of each function
individually, thwarting many of the techniques used to
bypass ASLR. Until now, however, the ASLR improve-
ments suggested in the literature have suffered from
one or more drawbacks that have prevented their use
in practice. Some techniques rely on binary rewriting,
which does not scale to complex programs such as web
browsers [22, 38]; others randomize the code using a cus-
tomized compiler [35], or require each user to download
their own unique binary [42].

Goals and Contributions The goal of this
paper is to demonstrate a load-time randomization
technique—mamed selfrando—that improves security
over ASLR while preserving the features that enabled
ASLR’s widespread adoption. While technically chal-
lenging, our use of load-time function layout permuta-
tion ensures that the attack surface changes from one
run to another. Load-time randomization also ensures
compatibility with code signing and distribution mech-
anisms that use caching to efficiently serve millions of
users. Finally, we worked in close collaboration with the
TB developers to ensure that selfrando was fully com-
patible with ASan so that users can use both techniques
simultaneously. ASan is used in a hardened version of
TB to detect and diagnose memory corruption errors.

Summing up, our main contributions are:

— Practical Randomization Framework Unlike
other solutions that have only been tested on bench-
marks, selfrando can be applied to the TB with-
out any changes to the source code. To the best of
our knowledge, selfrando is the first approach that

46

avoids risky binary rewriting or the need to use a
custom compiler, and instead works with existing
build tools. Moreover, it is fully compatible with
ASan, which required additional implementation ef-
fort since the randomization interferes with ASan.

— Increased Entropy and Leakage Resilience

selfrando reduces the impact of information leak-
age vulnerabilities and increases entropy relative
to ASLR, making selfrando more effective against
guessing attacks. Our use of load-time randomiza-
tion mitigates threats from attackers observing bi-
naries during download or after the executable files
have been stored on disk.

— Hardening the Tor Browser We demonstrate

the practicality of selfrando by applying it to the en-
tire TB without requiring any code changes. Our de-
tailed and careful evaluation shows that the startup
and performance overheads of selfrando are negligi-
ble.

2 Background

2.1 Exploiting Memory Corruption

Unlike modern programming languages, C and C++ rely
on manual memory management, trading reliability for
flexibility and performance. Hence, memory manage-
ment errors often create vulnerabilities that can be ex-
ploited to hijack control flow and perform other mali-
cious operations that were never intended by the pro-
gram authors.

Traditionally, attackers used a buffer overflow to di-
rectly inject malicious code into a program and exe-
cute it [6]. However, the introduction of the WX pol-
icy that requires memory pages to either be writable
or executable, but not both, made most code-injection
attacks [49] obsolete. As WX became commonplace,
attackers changed their tactics from code injection to
code reuse. These attacks reuse existing, legitimate code
for malicious purposes and have therefore proven far
harder to stop than code injection. Return-into-libc
(RILC) attacks, for example, arrange the stack contents
so the attacker can call dangerous functions inside the
C library with attacker-controlled arguments [52]. Such
attacks were later generalized to the so-called return-
oriented programming (ROP) [63]. The insight behind
ROP is that attackers can build a malicious virtual ma-
chine out of short instruction sequences—called gadgets
in ROP parlance—ending with a return (or some other

indirect branch). These gadgets are all located inside
application code, so the attacker has no need to in-
ject them into the program. Over the last decade re-
searchers have discovered many variants of code-reuse
attacks [10, 11, 15, 59, 76], most of which are not
stopped by ASLR, W®X, or other widely deployed ex-
ploit mitigations.

2.2 Preventing Code-Reuse Exploits

To successfully mount a code-reuse attack, several re-
quirements must be met. First, the application must
contain a memory corruption vulnerability that allows
control flow to be hijacked. Techniques such as control-
flow integrity and stack canaries make control-flow hi-
jacking harder but do not prevent it outright [14, 29,
36, 48]. Another key requirement is knowledge of the
absolute addresses of the gadgets to reuse. In principle,
ASLR [54] prevents adversaries from knowing the ab-
solute locations of ROP gadgets. However, since ASLR
only randomizes the base address of a library, adver-
saries still know the relative positions of all functions
inside a library. Using this knowledge together with a
leaked code pointer, attackers can compute the absolute
addresses of all functions in the same library. Academics
have documented numerous ways to leak code or point-
ers to code [24, 60, 62, 66]. Permuting the functions in-
side a library removes attackers’ knowledge of the rela-
tive function layout inside each library, and additionally
improves entropy by allowing an exponentially higher
number of code layouts in comparison to ASLR, [44].
Numerous other fine-grained diversity techniques
have been suggested in the literature. In this paper, we
focus on function permutation since it is practical and
efficient, as shown by existing diversity surveys [17, 46].
Unfortunately, previous fine-grained diversity ap-
proaches have been unable to replace ASLR because
they have one or more of the following drawbacks:
1. they introduce unacceptable performance over-
heads [69],
2. they rely on unsafe binary rewriting techniques that
do not scale to complex, real-world applications,
3. they randomize code at compile time which is in-
compatible with current distribution mechanisms
that are optimized to deliver a single binary.

In contrast, the technique we present in this paper, sel-
frando, avoids all of these drawbacks and scales to real-
world applications including Firefox and TB.

2.3 Trust in Privacy-preserving Software

As we have previously mentioned, any tactic that al-
lows de-anonymization of Tor network users is likely to
be attempted by law enforcement, intelligence agencies,
and other resourceful adversaries. The ability to sur-
reptitiously insert backdoors into the TB would be a
particularly powerful attack. In order to reduce the like-
lihood that backdooring attempts would go unnoticed,
the Tor developers ensure that builds are reproducible.
Even though the TB source code can be downloaded by
anyone, differences in build tools, libraries, file system
layout and even system time make it hard to simply
build the TB from sources and compare it to the official
binaries to ensure the absence of backdoors. Therefore,
the TB is built using Gitian, a special tool which pro-
vides a reproducible build environment [55, 72]. This al-
lows third parties to independently compile and verify
the binaries distributed by the Tor Project and detect
any signs of external compromise.

Gitian consists of a virtual machine and a number of
build scripts to automate the process. The virtual ma-
chine insulates the build from the outside environment.
At the time selfrando was developed, the TB builds for
Linux used a virtual machine based on Ubuntu 10.04.
Hence, many build tools were unavailable or outdated.
To cope with this shortcoming, we either compiled a re-
cent version of the tool in the virtual machine itself or we
adapted the build process to support the older version.
The Tor developers recently (May 2016) switched to a
virtual machine based on Debian 7. During the switch
no modifications were necessary to our code.

3 Selfrando

3.1 Design Objectives

Our main objective is to substantially raise the costs for
attackers to exploit memory-corruption vulnerabilities.
For practicality reasons, we choose to support complex
C/C++ programs (e.g., a browser) without modifying
their source code. Further, we retain full compatibil-
ity with current build systems, i.e., we should avoid
any modification to compilers, linkers, and other oper-
ating system components. To be applicable for privacy-
preserving open-source tools, we must not rely on any
third-party proprietary software. Finally, our solution
should not substantially increase the size of the program
in memory or on disk.

47

3.2 Threat Model

We make standard assumptions from underlying real-
world adversary settings: we assume that a remote at-
tacker triggers a memory corruption vulnerability to hi-
jack control flow and achieve remote code execution.
Due to the widespread deployment of stack protec-
tions (e.g., StackGuard [18] and SafeStack [70]) and the
fact that most exploits against browsers rely on use-
after-free errors [75], we assume that the adversary ex-
ploits a heap-based memory corruption vulnerability.
This means that the adversary can use code pointers
stored on the heap to disclose the location of code be-
fore mounting a code-reuse attack. Further, we assume
that a W@X policy is in place to prevent code injection,
which is true for all modern systems. In this work we
do not consider attacks that target the browser’s JIT
engine.

Note that our threat model does not cover some the-
oretical attacks such as JIT-ROP [66] and COOP [59]
that have only been demonstrated in an academic set-
ting. As mentioned above, our main objective is high
practicality while significantly improving security pro-
vided by ASLR against memory corruption attacks; de-
fenses that can stop JIT-ROP and COOP are less ef-
ficient and rely on special hardware support, a custom
compiler, and a patched OS kernel [12, 20, 21].

3.3 Selfrando Design

Existing exploit mitigations such as W&X and ASLR
already make de-anonymization exploits costly to de-
velop. Thus, exploits which bypass these mitigations of-
ten target high-profile applications with many users. Al-
though the Tor user base isn’t large, the TB shares a
large amount of code with Firefox which has hundreds of
millions of users and contains more than 20 million lines
of code. The similarities between the TB and Firefox
make it comparatively easy to re-purpose mainstream
Firefox exploits to de-anonymize Tor users. We can use
our improved randomization mechanism to protect the
TB and at the same time strongly raise the bar for the
adversary to port exploits from Firefox to TB.

The easiest way to perform fine-grained code ran-
domization is by customizing the compiler to take a seed
value and generate a randomized binary [32, 42]. Un-
fortunately, compiling and distributing a unique binary
for each is impractical for introducing diversity among a
population of programs [30, 78]. With more implementa-
tion effort, we can delay randomization until load-time,

48

AN
source
C/C++ | files
compiler

AN
source
C/C++ | files
compiler

object object
files ¢ files
i linker ,
linker linker
wrapper
executable executable
RandoLib

loader loader
randomization

@ provess

(b) with selfrando

@ provess

(a) without selfrando

Fig. 1. Building and running applications without (a) and with
selfrando (b) enabled.

which has several benefits. Most importantly, software
vendors only need to compile and test a single binary.
A single binary also means that users can continue to
use hashes to verify the authenticity of the downloaded
binary. Finally, modern content delivery networks rely
extensively on caching binaries on servers; this optimiza-
tion is no longer possible with unique binaries.

In the context of privacy-preserving software such as
TB, compile-time randomization raises additional chal-
lenges. Randomized builds would complicate the deter-
ministic build process,! which is important to increase
trust in the distributed binary (see Section 2.3). More-
over, compile-time randomization would (a) increase the
feasibility of a de-anonymization attack due to individ-
ual, observable characteristics of a particular build, and
(b) allow an attacker to build knowledge of the mem-

1 A randomized build can be implemented in a deterministic
environment by passing a random seed as an input to the de-
terministic process. The builds would then be distributed along
with their seed. A user could then check the integrity of her build
by running the deterministic process again with the same seed.
However, that check would not prove the integrity of builds with
other seeds.

ory layout across application restarts, since the layout
would be fixed.

For these reasons, we decided to develop a frame-
work which makes the program binary randomize itself
at load time. We chose function permutation (ASLP) as
the randomization granularity, since it dramatically in-
creases? the entropy of the code layout while imposing
the same low overheads as ASLR [44]. Since discover-
ing function boundaries at load-time by analyzing the
program binary is unreliable and does not scale to large
programs, we pre-compute these boundaries statically
and store the necessary information in each binary. We
call this Translation and Protection (TRaP) informa-
tion.

Rather than modifying the compiler or linker, we
developed a small tool which wraps the system linker,
extracts all function boundaries from the object files
used to build the binary, then appends the necessary
TRaP information to the binary itself. Our linker wrap-
per works with the standard compiler toolchains on
Linux and Windows and only requires a few changes
to the build scripts to use with the TB.

Figure la represents the usual workflow from the
C/C++ source code to a running program. Figure 1b
represents the modified workflow with selfrando. A
linker wrapper intercepts calls to the linker and calls sel-
frando to gather information on the executable file @).
Then, it embeds TRaP information and a load-time ran-
domization library, RandoLib, into the binary file @.
When the loader loads the application, it will invoke
RandoLib instead of the entry point of the application.
RandoLib will randomize the order of the functions in
memory and then transfer control to the original pro-
gram entry point.

4 Implementation

One of our main goals is to demonstrate the practicality
of selfrando by integrating it into the TB. To test self-
rando before it is released to Tor users at large, the Tor
project decided to first include our defense in a series
of experimental, hardened builds for Linux.3 The hard-
ened builds of Tor include additional features such as
AddressSanitizer (ASan), a compiler feature which can

2 We compare the entropy of function permutation and ASLR
in Section 5.

3 Selfrando is also compatible with Android and closed-source
platforms such as Microsoft Windows.

detect memory corruption. ASan and selfrando are com-
plementary in nature. The former detects bugs that can
create security issues, however, ASan is not a defense
mechanism like selfrando and should not be relied upon
to stop exploits [51].

To build a program with selfrando, the build scripts
must be updated to use our linker wrapper rather than
directly invoking the system linker. The wrapper ac-
cepts the same arguments as the system linker, so mod-
ifying the build scripts is a straightforward task for a
skilled software developer. This enables us to intercept
any invocation of the linker and modify its arguments.
In the following we will explain the major implementa-
tion aspects with the help of Figure 2. Notably, we will
explain in detail how selfrando (1) extracts the metadata
needed to create self-randomizing binaries, (2) embeds
the extracted information and the load-time component
into the generated binary, and (3) permutes all functions
during load time without breaking the application.

Finally, we describe two practical challenges that
we solved to make selfrando compatible with the hard-
ened build of TB. Specifically, we needed selfrando to
(4) support stack unwinding which is needed for stack
traces and exception handling and (5) be compatible
with ASan.

4.1 Extracting TRaP Information

When a module is loaded, selfrando permutes the order
of all its functions. To do so, selfrando requires accurate
information about function boundaries. If this informa-
tion is not accurate, shuffling the function layout may
inadvertently introduce errors that prevent correct exe-
cution of the application. After a function is moved, all
references and pointers to this function, e.g., the target
address of a call, become invalid because they still ref-
erence the old address. Hence, selfrando needs to update
all references to the moved function, and therefore re-
quires, for each function, a complete list of all locations
that reference that function.

Such information is present in the intermediate ob-
ject files @. Since this metadata is usually not required
during execution, the linker strips it from the final bi-
nary. Our linker wrapper therefore intercepts the linking
process to extract function boundaries and references
and embeds this information for use at load time.

However, object files do not explicitly mark all func-
tion references. Specifically, we found that in some cases
the compiler optimizes the code by inserting direct
jumps between two functions. Such references are not

49

executable —>[loader J—> process
source
files ?
C/C++ C/C++ ELF headers ELF headers
RL
v v | starter I—
. function 1 A function n
[compiler] i
function 2 function 1
—>| RandoLib
¢B ¢ function .. 7y l function ..
P object function n function 2
.0 .0 files RL starter RL starter
metadata metadata RandoLib e_' RandoLib
\ 4 Y TRaP info TRaP info
linker link
Wrapper Inker data data

| 1

Fig. 2. Workflow of selfrando.

marked with an explicit relocation because they are al-
ready resolved by the compiler. Fortunately, we can dis-
able this behavior with a compiler option causing the
compiler to place each function in a separate section.
Since the compiler marks all references between sec-
tions, we can then see all function references. While en-
abling this option slightly increases build-time (0.07%),
it also enables a linker optimization which increases lo-
cality [31].

Pre-compiled language runtime object files are an-
other obstacle. One example is crtbegin.o for GCC
which contains functions to initialize the runtime en-
vironment for applications that were programmed in
C. In our current implementation, we treat such object
files as one single block because they contain only a few
functions. This has a negligible impact on the overall
randomization entropy. Nevertheless, we are currently
investigating how we can generate selfrando-compatible
versions of the pre-compiled object files.

After selfrando extracts the necessary metadata
from each generated object, it adds an additional linker
argument that instructs the linker to generate a map
file, which is a text file that contains the memory lay-
out of the final binary @. Using the metadata and the
map file, selfrando can compute the final location of each
function in the executable file and all references to these
functions.

Next, we explain how we embed the TRaP informa-
tion in the binary to make it available to the run-time
component—RandoLib.

50

4.2 Embedding TRaP information

We include the TRaP info, which is used by RandoLib,
in the executable to make selfrando self-contained. This
avoids having to manage additional files, which could
add logistical burden.

However, from a technical point of view, embed-
ding the data in a space-efficient and binary format-
compatible way without modifying the linker is chal-
lenging. The main reasons are that (1) some of the
metadata is only available after linking is complete, and
(2) we cannot pre-allocate space for the data since the
exact amount of space needed is unknown until linking
is done. In particular, the start address of each function
in the linked binary is determined by the order and final
addresses of the object files in the binary, and therefore
unknown until all objects are linked.

To add additional data to the final binary, we have
to resort to a trick that involves changing the linker
input so that it adds an empty segment header in the
beginning of the binary. Note that a linked ELF bi-
nary is divided into segments. The linker creates a seg-
ment header which contains segment metadata, e.g., size
and memory permissions, for each segment. The loader
uses this metadata to load each segment of the binary
into memory. Due to the structure of the binary for-
mat, adding an empty segment header in the beginning
of the binary enables selfrando to append an arbitrary
amount of data. When the linker is finished, we append
the TRaP info and RandoLib to the end of the binary
and set the values of the empty segment header accord-

ingly @. Finally, we change the start address of the
binary—its entry point—to RandoLib. Hence, after the
loader loads the binary into memory, it will transfer
control to RandoLib, which then performs the function
permutation.

4.3 Load-time Function Permutation

RandoLib performs function permutation using the em-
bedded TRaP info, and consists of two parts: a small
helper stub and the main randomization module. The
purpose of the helper stub (RL Starter in Figure 2) is
to make all selfrando data inaccessible after RandoLib
finishes. The operating system loader @ calls this stub,
invoking RandoLib as the first step of program execu-
tion.

The function permutation algorithm proceeds in
several steps. First, RandoLib generates a random order
for the functions using the Fisher-Yates shuffling algo-
rithm. Second, RandoLib uses the embedded metadata
to fix all references that became invalid during the ran-
domization. Finally, after RandoLib returns, the helper
stub makes selfrando’s data inaccessible @, and jumps
to the original entry point of the binary.

While this approach might seem straightforward, we
faced several technical challenges. For example, we have
to consider that C++ code and certain assembly instruc-
tions require a certain alignment for every function. The
Ttanium C++ method pointer specification assumes that
all functions are at least 2-byte aligned [43]. Further, we
found that some assembly instructions are sensitive to
alignment, e.g., movdga which is commonly used in the
implementation of cryptographic functions. We account
for the alignment of C++ functions by increasing the
size of the code segment by one byte per function. This
allows RandoLib to maintain the least significant bit
alignment of functions during copying. During our eval-
uation, we found that this alignment increases the file
size on average by 0.3%.

Our

alignment-sensitive assembly instructions, as they are

implementation does not fully support
not used by the TB. We can currently run programs
that use such instructions by preserving the four least
significant bits of function addresses during randomiza-
tion. Moreover, we are working on a static analysis tool
that can identify functions that contain these instruc-
tions, and mark them in the TRaP info so RandoLib

can take their alignment constrains into account.

-

‘‘‘‘‘‘‘‘

variables

saved ebp
return addr.

ebp —»»

arguments

—————
-

~

~~~~~

-----
-

‘‘‘‘‘‘‘‘

variables

I

saved ebp
return addr.

arguments

-----
-
~~~~~

-

~~~~~

variables

NULL
return addr.

Fig. 3. Stack layout with the frame pointers.

4.4 Stack Unwinding

During program execution, the program stack is divided
into stack frames. Each stack frame corresponds to a
function call and consists of local variables, the return
address, and arguments which were passed to the callee.
Stack unwinding is the process of iterating through all
active stack frames, starting from the most recent. It
is mainly used for stack traces and exception handling,
as both require access to previous stack frames. Excep-
tion handling uses stack unwinding to find the excep-
tion handler for a given exception after the program
has thrown an instance of that exception.

Traditionally, stack unwinding is supported by
chaining stack frames as a singly-linked list, where each
stack frame includes a pointer to the previous stack
frame. The head of the linked list is stored in a dedi-
cated register called the base pointer (BP) (ebp on x86).
When a new stack frame is added, the called function
saves the BP register of the caller on the stack, then
overwrites the BP register to point to the current stack
frame, as shown in Figure 3.

Modern compilers omit the frame pointer for opti-
mized code to reduce memory usage on the stack and
free another register for general purpose computations.
To still support stack unwinding, compilers generate ad-
ditional metadata which can be used to identify individ-

51



ual stack frames. Function permutation invalidates func-
tion references inside the stack unwinding metadata, so
RandoLib updates them.

4.5 AddressSanitizer

The TB developers use AddressSanitizer (ASan) [61] to
detect memory corruption bugs in their hardened re-
leases. To allow selfrando to be deployed on TB, self-
rando needs to work correctly with ASan.

In general, selfrando does not interfere with the nor-
mal operation of ASan. When ASan detects a memory
corruption, it generates a stack trace, which is supported
by selfrando (cf. Section 4.4). To help troubleshoot mem-
ory corruption bugs, ASan annotates the stack trace
with symbolic information. Specifically, it uses a sym-
bolizer to obtain the function name and the source code
location of every address in the stack trace. After self-
rando randomizes the order of functions, the symbolizer
can no longer correctly map the stack addresses to func-
tion names. We restore the symbolizer’s ability to anno-
tate stack traces by emitting a map file that stores the
original and actual address of each randomized function.
We modify the symbolizer of ASan to use the emitted
mapping to map the addresses of the stack trace to the
original address.

While storing the randomization map on disk is
a potential security risk, exfiltrating this map would
require that the attacker can read the randomization
map file. The ability to read arbitrary files gives the at-
tacker other, more significant advantages. For example,
an attacker could use this advantage to disclose the full
memory layout of the program by reading the special
/proc/self/men file.

5 Experimental Evaluation

We thoroughly evaluated selfrando from a security, per-
formance and compatibility standpoint.

5.1 Security Analysis

We first evaluate the security of our solution and ASLR
in terms of randomization entropy. This shows how well
each defense resists brute force attacks. We then use a
real-world exploit to compare our solution to ASLR in
cases where attackers exploit information leakage which
can be more effective than brute force guessing.

52

Randomization Entropy

For any randomization scheme the amount of entropy
provided is critical, because a low randomization en-
tropy enables an attacker to guess the randomization
secret with high probability [64]. We compare selfrando
to ASLR—the standard code randomization technique
that is available on all modern systems.

We determined the real-world entropy of ASLR by
running a simple position-independent program multi-
ple times and analyzing the addresses, on a Debian 8.4
machine using GCC 6.1.0 and Clang 3.5.0. ASLR pro-
vides up to 9 bits of entropy on 32 bit systems and
up to 29 bits of entropy on 64 bit systems. While the
ASLR offset on 32 bit systems is guessable in a rea-
sonable amount of time, such attacks become infeasi-
ble on 64 bit systems because the address space is that
much larger. However, an attacker can bypass ASLR by
leaking the offset that the code is loaded at in mem-
ory through a pointer into application memory. Once
this offset is known the attacker can infer any address
within the application, because it is used to shift the
address of the whole application.

Selfrando, on the other hand, applies more fine-
grained function permutation. This means the random-
ization entropy does not depend on the size of the ad-
dress space, as it is the case for ASLR, but on the num-
ber of functions in the randomized binary. The total
entropy generated by selfrando on a library containing
m functions depends on the factorial of m:

Ey =logy(ml)

On the other hand, the attacker does not usually
need to disclose the whole layout; the addresses of a
few functions are enough. Assuming the attacker al-
ready bypassed ASLR, the attacker needs to disclose
the least significant bits of each pointer. The entropy of
a pointer to a randomized function depends on the size
of the executable section s:

Ep =logy(s) —1

We need to subtract 1 because the least significant
bit of the addresses is preserved during the random-
ization. Assuming that the attacker needs gadgets in n
different functions, the total number of bits the attacker
needs to disclose is the minimum of F; and n times E,:

E = min(E¢,n x Ep)

In practice, F; is much greater than E, due to the
factorial, so we can assume E =n x E,.



Technique Entropy
ASLR (32 bit) 9 bits
ASLR (64 bit) 29 bits
Selfrando (10 KB code) 13xn bits
Selfrando (163 KB code)  17xn bits
Selfrando (6.5 MB code)  22xn bits
Selfrando (92 MB code)  26Xxmn bits

Table 1. Randomization entropy of ASLR and selfrando for dif-
ferent address space sizes and function counts. For selfrando, we
report the number of bits the attacker needs to guess for each
function address the attacker needs.

Using TB as our model organism, we use the number
of functions to calculate the minimum and maximum
entropy for a binary protected by selfrando. The small-
est library (1ibplds4.so) has 44 functions in 10 KB of
code, while the biggest (1ibxul.so) has 242 873 func-
tions in 92 MB. The median is 494 functions in 163 KB,
while the average is 16 814 functions in 6.5 MB. Table 1
shows that for each function address, the attacker needs
to guess between 13 and 26 bits. If we assume that the
attacker needs the address of at least three functions,
selfrando is significantly more effective than ASLR. For
the smallest library, the attacker needs to guess at least
39 bits, while for the biggest, the attacker needs at least
78 bits.

Additionally, selfrando provides higher leakage re-
silience compared to ASLR because the attacker no
longer knows the relative function layout inside each
binary.

Real-world Exploits against the Tor Browser
One of our main objectives is to enhance the resilience of
TB against code-reuse attacks. Previously conducted at-
tacks, e.g., by the FBI [57], fail because these attacks do
not consider selfrando (see Appendix A for an overview
of the exploit the FBI used). Therefore, we analyze the
attack surface of TB after selfrando was applied in a re-
alistic attack scenario. We base our analysis on four ob-
servations we made while studying real-world exploits.
First, nearly all modern attacks exploit heap-based
vulnerabilities, despite the existence of stack vulner-
abilities [50]. However, whether a vulnerability can
be exploited to launch a code-reuse attack depends
on different factors, like how reliably the vulnerabil-
ity can be triggered and the present mitigation tech-
niques. Today, most stack-based vulnerabilities are not
exploitable because they are mitigated by modern stack
defenses [18, 70].

Second, information disclosure attacks are often lim-
ited to leaking heap memory because they access mem-
ory relative to the address of the vulnerable memory
object. A buffer overread, for example, can be exploited
to disclose consecutive memory which might contain in-
teresting pointers, whereas a use-after-free vulnerability
can be exploited to disclose interesting pointers of the
freed object. In both cases the attacker is not able to
(repeatedly) disclose absolute, and therefore, arbitrary,
addresses. For these reasons we assume that in a prac-
tical scenario the attacker cannot leak information that
is not located on the heap, e.g., stack or code pages.
To overcome this limitation attackers use a technique,
called heap feng shui [67], to place an object that con-
tains valuable pointers near to the vulnerable object.

Third, most real-world attacks are based on ROP.
While other types of code-reuse attacks exist [15, 52, 59],
ROP remains the most versatile technique. To execute a
ROP payload, the attacker needs to either inject his pay-
load directly on the stack, or use a stack-pivot gadget to
overwrite the stack pointer with an address that points
to the ROP payload on the heap. As mentioned previ-
ously, the attacker usually has no access to the stack.
Hence, the first gadget in the ROP chain is normally a
stack-pivot.

Fourth, ROP is merely used to bypass WdX poli-
cies and enable code injection, i.e., a small ROP pay-
load is used to (1) mark the data memory containing
the shellcode as executable and (2) branch to the shell-
code. The shellcode will then perform the actual task of
de-anonymizing the user or installing surveillance soft-
ware. To mark a data page as executable, only a single
system call is needed. Hence, the attacker requires only
gadgets that load the arguments for the system call into
the registers, then issue a system call and return to the
shellcode.

Based on these four observations, we examined the
main TB library with selfrando enabled (1ibxul.so hav-
ing a size of 92MB) to find out whether an attacker is
able to disclose the address of a stack-pivot and a sys-
tem call gadget based on addresses that can be found
on the heap. We focus on stack-pivot and system call
gadgets because they are less common, and therefore,
harder to disclose compared to gadgets that only load a
value into a register. In total, we found ten stack-pivot
and 76 system call gadgets of which only 4 and 29 re-
spectively are available through virtual functions whose
addresses are exposed on the heap through indirection
tables called virtual tables.

We manually analyzed each function and concluded
that no pointer to these functions is ever written on

53



+14%
+12%
+10%
+8%
+6%
+4%
+2%
+0%

B Clang ®mGCC

| - [ | - - ._
-2%

O 4w — > . a o x c
CA o C2RE=ZT PO PEDVESTRE S
SN PEESS58aszEg2g20regl
9 9 c 0T Q9 g@w<eE© cm_cg§
= o)) @ Q © N I Q o
= < S < [t
o o ° ©
o o x O

Fig. 4. Run time overhead on the benchmarks in the SPEC
CPU2006 suite (full selfrando).

the heap. The reason is that these function pointers are
only accessed through an indirection layer, i.e., memory
objects on the heap contain a pointer to a virtual table
which is located in the code or data section of the ap-
plication and contains a number of pointers to virtual
functions. Since the attackers can only disclose the vir-
tual table pointer, but not the virtual table itself, as it is
not on the heap, they cannot disclose gadget addresses.
Note that, when only ASLR is applied, the address of
the virtual table is randomized with the same offset as
the ROP gadgets. Therefore, such an attack can bypass
ASLR but not selfrando.

We therefore conclude that selfrando can thwart
most real-world exploits. Attackers can only succeed in
rare cases where they can disclose the complete heap
and data section.

5.2 Performance Overhead

We performed multiple tests to measure selfrando’s run-
time overhead. Since selfrando works at load-time, we
also measured the additional startup time.

All tests were performed on a system with an Intel
Core i7-2600 CPU clocked at 3.40 GHz, with 12 GB of
RAM and a 7200 RPM hard disk. We used version 5.0.3
of the Tor Browser on Ubuntu 14.04.3.

5.2.1 Load-time Overhead

We measured the load time of TB by inserting a return
statement in the main function, after the dynamic li-
braries are loaded but before the program actually does
anything. We invoked the modified program and mea-
sured the load time using the standard tool time. As a
baseline, we used the source code of TB 5.0.3, unmodi-

54

+3%

H Clang ™ GCC
+2%
+1% I
+O%——-.__ -I _I._,.I -—
-1%
-2%
-3%
-4%
— > o ~x c
SYCTCR2TELE=F o PECETTQLE ©
= a0 £ EEm—‘— S5 S O & o+ [J]
SN Em_owﬂ->E.°_-’.4_:<r—wm.E—°§
Q o c 0T Q9 g @weo© c © c 9@
o a o ~ a S
= o0 < S = g oo 9
Q g O

Fig. 5. Run time overhead on the benchmarks in the SPEC
CPU2006 suite (identity transformation).

fied except for the main function. For both versions, the
reported time is the average of 10 runs. We cleaned the
disk cache before each run, so the binary was loaded
from the disk every time.

The average load time for the normal version was
2.046 s, while the selfrando version took 2.400 s on aver-
age. The average overhead is 354 ms. We believe this is
an acceptable overhead considering the improved pro-
tection against de-anonymization attacks.

5.2.2 Run-time Overhead

To test the run-time overhead of selfrando, we ran the
SPEC CPU2006 benchmark suite as well as a number
of modern JavaScript benchmarks.

We executed all the C and C++ benchmarks in
SPEC CPU2006 with the two standard Linux compil-
ers (GCC and Clang) with selfrando enabled. Moreover,
we ran the benchmarks with a version of selfrando that
always chooses the original order for the randomiza-
tion (identity transformation). This version runs all the
load-time code but it does not actually modify the code
segment. It allows us to distinguish between load-time
overhead and run-time overhead. We ran each bench-
mark three times with the ref workload. The reported
figures are the median values.

Figure 4 shows the performance overhead on each
benchmark. The geometric mean of the positive over-
heads is 0.71% for GCC and 0.37% for Clang. The over-
head of each benchmark except for xalancbmk is be-
low 4%. We found xalancbmk to be an outlier, with
an overhead of about 14%. We investigated this issue
using the Linux performance analysis tool, perf, com-
paring the full selfrando and the identity transforma-
tion runs. We discovered a 69% increase in L1 instruc-

tion cache misses and a 521% increase in instruction



+15% M Clang
+10% GCC
+5%

[P T | | —

-5%

N YOG QT X=X ZTE owe % S 5mE S
UQ_UU:EE_ESQCEEE&(\:XEN
c-;mEEmQ$Q_>Ew3¢£wﬁc_ﬁ§

Q £ 2
8= c9eg3EYSL ETSCE
= < S < am 9
(] o o [¢]
o Re) x O

Fig. 6. Memory overhead of the benchmarks from the SPEC
CPU2006 suite (full selfrando).

TLB (Translation Lookaside Buffer) misses. We believe
that the xalancbmk benchmark is sensitive to the func-
tion layout and that some frequently executed functions
must be co-located to ensure optimal performance. We
didn’t observe a high sensitivity to the function layout
for any of the other benchmarks. A possible extension
to selfrando to cope with location-sensitive programs is
to automatically use performance profiling to identify
groups of functions that should be moved as a single
bundle similar to the work of Homescu et al. [41]. If
these bundles are small enough, this extension would
not significantly reduce the security of a large applica-
tion (xalancbmck contains 13478 functions). Figure 5
shows the run time overhead with the identity transfor-
mation.

In some cases, selfrando actually improves perfor-
mance. In particular, we observed that with the identity
transformation the performance of gobmk and povray
improves up to 2.5%. We suspect this is caused by the
compiler flag that places each function in its own sec-
tion, which enables further linker optimizations [31].
This flag is not enabled by default, but selfrando re-
quires it (see Section 4.1).

Figure 6 shows the overhead on the memory us-
age of each benchmark. To measure the memory usage,
we used the mazimum resident set size reported by the
time utility. The geometric mean of the positive over-
heads is 0.18% for GCC and 0.20% for Clang. We also
measured the absolute overheads: the geometric mean
of the positive values is 299 kB for GCC and 295 kB for
Clang.

The memory overhead of all benchmarks except for
povray and hmmer is below 2%. These benchmarks have
higher relative overheads due to their small memory
footprints, about 5 MB for povray and about 9 MB
for hmmer. Their absolute overheads are about 600 kB
and 400 kB respectively.

3.0%
2.5%
2.0%
1.5%
1.0%
0.5%

JetStream

0.0%

Massive Octane Geo Mean

Fig. 7. JavaScript performance overhead of selfrando w.r.t. a
version with all our modifications but without the actual random-
ization.

Finally, we evaluated selfrando with modern
JavaScript benchmarks that focus on realistic web work-
loads: JetStream 1.1., Massive and Octane 2.0 [1-3]. As
a baseline, we used a version of TB with the same mod-
ifications we need for selfrando (see Section 5.3), but
without the randomization. Since selfrando does not pro-
tect JIT-compiled code, we disabled the JIT compiler by
setting the Tor Security Slider to Medium-High. Fig-
ure 7 reports the results. Each benchmark produces a
score (higher scores are better) and we report the rela-
tive decrease on the score. The geometric mean of the
overheads is 2.02%, while the worst overhead is 2.5%.
Our measurements confirm that selfrando can be in-

tegrated in real-world applications with low overhead.

5.3 Compatibility

Selfrando was optimized to protect the TB which is
built with GCC. However, we built several other Linux
programs such as GNU Bash 4.3, GNU less 458, Ng-
inx 1.8.0, Socat 1.7.3.0 and Thttpd 2.26. We tested each
of them using application-specific workloads, such as
serving files and running shell scripts, and we did not
encounter any problem.

To prove compatibility to other compilers we de-
cided to build Chromium [9]. We chose Chromium be-
cause this project has a large and complex code base,
and uses Clang [47] as default compiler. Like with
TB, we had to resort to the libc heap allocator, as
Chromium’s default heap allocator relies heavily on
Thread-Local Storage (TLS) and, hence, is not fully
compatible with selfrando. However, after changing the
heap allocator we successfully built and run Chromium.

Both browsers implement cryptography using low-
level code that embeds data in the code segment. This
produces unexpected results when the data is moved

55



along with the functions and the alignment is not pre-
served. For Firefox, we disabled the low-level implemen-
tation and we used the high-level one. For Chromium,
there was no easy way to disable the alignment-sensitive
code and we had to preserve the four least significant
bits of the addresses during the randomization (see Sec-
tion 4.3).

To ensure selfrando did not break any functionality
we tested both browsers with popular websites? and we
did not encounter any problems.

5.4 Including selfrando in the Tor Browser

The Tor Project is experimenting with a number of dif-
ferent tools to produce hardened builds of TB [56]. We
worked closely with their developers in order to make it
easy to integrate selfrando in TB. Selfrando was added to
the nightly hardened builds released and May 13, 2016
or later [45]. They plan to release a hardened version
that includes selfrando and to evaluate the inclusion of
selfrando in the normal version.

6 Discussion

Privacy Implications

Load-time code randomization effectively creates a
unique code layout for each TB session. Theoretically,
an adversary with the ability to read memory can ex-
ploit this to create a unique fingerprint to identify the
user across different websites.

However, we argue that modern Web technologies
(like JavaScript) by themselves can be exploited to leak
information to identify users across different websites.
Moreover, even without selfrando, an attacker that can
read the memory or leak some pointers can fingerprint
a browsing session in a number of different ways. ASLR
creates code diversity because the binary and the li-
braries are loaded to different addresses. ASLR also af-
fects the allocation of dynamic data structures such as
the heap, stack and data within the heap. The allo-
cation of these data structures is highly dependent on
the usage of the browser, and hence, it is very likely
that the disclosure of heap addresses is already enough
to identify users. Additionally, a potential fingerprint
of the randomized code is only valid for one browsing

4 To get a representative set, we selected the Alexa Top 100
sites (http://www.alexa.com/topsites) of November 2015.

56

session; after a browser restart, the code layout is ran-
domized differently. Finally, selfrando is compatible with
XoM [7, 12, 20, 34] which prevents reading memory that
contains code in the first place.

Hence, our randomization scheme does not increase
the risk of fingerprinting.

System libraries

While software protected by selfrando works smoothly
with unprotected libraries (and protected libraries work
smoothly with unprotected programs), the security
guarantees provided by selfrando are obviously limited
to software that was re-built with selfrando. The TB in-
cludes most needed libraries, and hence, is not affected
by this.

Future Work

Our current implementation focuses on applying self-
rando to the TB. We are currently working on improv-
ing operating specific features, such as the support for
thread-local storage (TLS). TLS is heavily used in Fire-
fox’s default heap allocator jemalloc, however, it is pos-
sible to build the TB using the default heap allocator
provided by libc instead, which does not rely on TLS.
In fact, the TB developers expressed their desire to use
a different allocator as well [56].

7 Related work

Run-time defenses usually rely on either memory ran-
domization or integrity checks to prevent vulnerability
exploitation.

7.1 Randomization-based defenses

We refer to the SoK paper by Larsen et al. [46] for
a thorough analysis of the proposed software diversity
tools and limit our discussion to recent works which are
relevant to our purposes.

XIFER by Davi et al. [22] is a load-time fine-grained
randomization tool that does not require access to the
source code or offline analyses. However, its processing
speed (< 0.7 MB/s) makes it unsuitable for complex
applications that need to be loaded quickly.

Giuffrida et al. [35] proposed a compiler-based pe-
riodic re-randomization strategy for microkernels; this



strategy would require end users to compile the TB
locally on their system which is impractical for users
with low end systems and would significantly increase
the download size of the TB. Homescu et al. [42] build
a compile-time randomization approach that scales to
large applications such as the TB but requires that each
user download a unique copy of the browser. The ap-
proaches by Giuffrida et al. and Homescu et al. both
require a heavily customized compiler and do not work
with the standard build tools for Linux and Windows.

Instruction Location Randomization (ILR) by Hiser
et al. [40] rewrites binaries in a new randomized encod-
ing that is interpreted by a virtual machine with a per-
formance overhead of about 15%. Unlike our approach,
ILR is incompatible with just-in-time compiled code.

Binary stirring by Wartell et al. [77] processes bina-
ries at install time by disassembling them and adding a
load-time component; it also needs a run-time compo-
nent due to imperfect disassembly. It is not suitable for
our purposes since it relies on a commercial disassembler
that cannot be bundled with free software. Additionally,
performing additional processing at installation time in-
validates the code signature of a signed program.

Marlin by Gupta et al. [38] also randomizes binaries
at load time. Unlike binary stirring, Marlin does not
contain a runtime-component to detect and compensate
for disassembly errors. While the omission of a runtime
component lowers overheads in time and space, Marlin is
limited to simple ELF binaries that disassemble without
errors.

A recent patch submitted to OpenBSD [25] random-
izes the layout of the C library during system boot. In
particular, the patch permutes the linking order of each
translation unit. This shuffles symbols (e.g. functions)
relative to symbols defined in other files but does not
change the order of symbols defined in the same trans-
lation unit. The OpenBSD approach therefore adds less
entropy than selfrando which shuffles each function in-
dependently no matter what translation unit defines
it. Moreover, selfrando generates a different layout for
each application each time it launches, preventing the
attacker from leveraging a vulnerability in one applica-
tion to disclose the layout of the library in a different
application on the same system.

7.2 Leakage-resilient diversity approaches

Unfortunately, security tools based solely on random-
ization are vulnerable to attacks aimed at disclosing the
pointers to code pages. Snow et al. [66] showed that, if

the attackers can read arbitrary memory pages through
a vulnerability, they can recursively scan the memory,
find other code pages, disassemble them and craft an
ad-hoc ROP attack (JIT-ROP). Bittau et al. [8] showed
that it is possible to perform a similar attack even with-
out a complete memory read vulnerability, just by ob-
serving whether the program crashes for a particular
input (this particular attack would not work if the pro-
gram randomizes itself at each run).

Thus, even fine-grained randomization does not pro-
vide complete leakage resilience on its own. This has
motivated numerous papers that combine memory ran-
domization techniques with integrity checks (such as
execute-only memory) to provide comprehensive pro-
tection.

Execute-only memory on x86 processors is diffi-
cult to achieve because read permissions are implic-
itly granted to executable pages. To do so, XnR by
Backes [7] marks all pages mot present and inspects
every page reference inside the operating system page-
fault handler. HideM by Gionta et al. [34] uses a par-
ticular TLB implementation available in certain proces-
sors. Readactor by Crane et al. [20] uses a lightweight
hypervisor in order to enable the extended page tables
feature in modern x86 processors and enforce execute-
only memory in hardware. LR? by Braden et al. [12]
uses a software-only approach based on load masking.

Many of these tools include randomization to pro-
vide comprehensive attack resilience; most implementa-
tions randomize the code at compile time. These tools
could be made more practical by using selfrando to sim-
plify distribution without sacrificing security.

7.3 Integrity-based defenses

Control-flow integrity (CFI) [4, 5] prevents control flow
hijacking by only allowing jumps and calls at run-time
that are present in the source. Implementing CFI with
acceptable performance overhead on commodity hard-
ware is hard; thus, many CFI implementations trade a
coarse-grained CFI enforcement for better performance.

Most CFI implementations do not rely on random-
ization, so an attacker can exploit a coarse-grained CFI
policy by carefully constructing a malicious payload of-
fline and then using it [13, 23, 36, 37]

Finally, Code-Pointer Integrity (CPI) aims to pre-
vent pointer hijacking by storing code pointers, pointers
to code pointers etc. in a safe region; all accesses to the
safe region are instrumented to ensure the integrity of
the pointers. Performance overhead is relatively small

57



because CPI only needs to instrument a subset of mem-
ory operations. The critical issue is the protection of the
safe region; on 64-bit Intel processors, segmentation is
not available, thus CPI is forced to use information hid-
ing. Unfortunately, the most efficient implementations
of this defense can also be bypassed [28].

8 Conclusions

The most widely used and privacy-sensitive programs
have large code bases which makes it virtually impossi-
ble to ensure that they contain no vulnerabilities. Many
exploit mitigations have been proposed to prevent at-
tacks, however no existing tool has the performance and
deployability properties that are needed for complex but
user-friendly software such as the Tor Browser.

We have introduced selfrando, a fast and practical
load-time randomization tool. It has negligible run-time
overhead, a perfectly acceptable load-time overhead,
and it requires no changes to protect the Tor Browser.

Moreover, selfrando can be combined with integrity
techniques such as execute-only memory to further se-
cure the Tor Browser and virtually any other C/C++
application.

Acknowledgments

This work was supported in part by the German Sci-
ence Foundation (project S2, CRC 1119 CROSSING),
the European Union’s Seventh Framework Programme
(609611, PRACTICE), and the German Federal Min-
istry of Education and Research within CRISP.

This material is based upon work partially sup-
ported by the Defense Advanced Research Projects
Agency (DARPA) under contracts FA8750-15-C-0124,
FA8750-15-C-0085, and FA8750-10-C-0237 and by the
National Science Foundation under award number ITP-
1520552.

Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the
authors and do not necessarily reflect the views of the
Defense Advanced Research Projects Agency (DARPA),
its Contracting Agents, the National Science Founda-
tion, or any other agency of the U.S. Government.

58

References

(6]
7]

(8]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

Jetstream 1.1. http://browserbench.org/JetStream/.
Massive: the asm.js benchmark. https://kripken.github.io/
Massive/.

Octane 2.0. http://chromium.github.io/octane/.

M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-
flow integrity. In ACM SIGSAC Conference on Computer
and Communications Security, 2005.

M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-
flow integrity principles, implementations, and applica-
tions. ACM Transactions on Information System Security,
13, 2009.

Aleph One. Smashing the stack for fun and profit. Phrack
Magazine, 49, 2000.

M. Backes, T. Holz, B. Kollenda, P. Koppe, S. Nurnberger,
and J. Pewny. You can run but you can’t read: Preventing
disclosure exploits in executable code. In ACM SIGSAC
Conference on Computer and Communications Security,
2014.

A. Bittau, A. Belay, A. J. Mashtizadeh, D. Magziéres, and
D. Boneh. Hacking blind. In 85th IEEE Symposium on
Security and Privacy, 2014.

Black Duck Software, Inc. Chromium project on Open Hub.
https://www.openhub.net/p/chrome, 2014.

T. K. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang. Jump-
oriented programming: a new class of code-reuse attack.
In 6th ACM Symposium on Information, Computer and
Communications Security, 2011.

E. Bosman and H. Bos. Framing signals—a return to
portable shellcode. In 35th IEEE Symposium on Security
and Privacy, 2014.

K. Braden, S. Crane, L. Davi, M. Franz, P. Larsen,
C. Liebchen, and A.-R. Sadeghi. Leakage-resilient layout
randomization for mobile devices. In 28rd Annual Network
and Distributed System Security Symposium, 2016.

N. Carlini and D. Wagner. ROP is still dangerous: Breaking
modern defenses. In 23rd USENIX Security Symposium,
2014.

N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. R.
Gross.  Control-flow bending: On the effectiveness of
control-flow integrity. In 24th USENIX Security Sympo-
stum, 2015.

S. Checkoway, L. Davi, A. Dmitrienko, A. Sadeghi,
H. Shacham, and M. Winandy. Return-oriented program-
In ACM SIGSAC Conference on
Computer and Communications Security, 2010.

X. Chen.
exploits. http://www.fireeye.com/blog/technical /cyber-
exploits /2013 /10/aslr- bypass- apocalypse- in-lately- zero-
day-exploits.html, 2013.

F. B. Cohen. Operating system protection through program

ming without returns.

ASLR bypass apocalypse in recent zero-day

evolution. Computers € Security, 12, 1993.

C. Cowan, C. Pu, D. Maier, H. Hintony, J. Walpole,
P. Bakke, S. Beattie, A. Grier, P. Wagle, and Q. Zhang.
StackGuard: Automatic adaptive detection and prevention
of buffer-overflow attacks. In 8th USENIX Security Sym-
posium, 1998.



(19]

[20]

21]

22]

23]

24]

[25]

[26]

27]

(28]

29]

(30]

31]

(32]

(33]

J. Cox. Confirmed: Carnegie Mellon University attacked
Tor, was subpoenaed by Feds. http://motherboard.vice.
com /read / carnegie- mellon- university - attacked - tor- was-
subpoenaed-by-feds, 2016.

S. Crane, C. Liebchen, A. Homescu, L. Davi, P. Larsen,
A.-R. Sadeghi, S. Brunthaler, and M. Franz.
Practical code randomization resilient to memory disclo-

Readactor:

sure. In 36th IEEE Symposium on Security and Privacy,
2015.

S. Crane, S. Volckaert, F. Schuster, C. Liebchen, P. Larsen,
L. Davi, A.-R. Sadeghi, T. Holz, B. D. Sutter, and M. Franz.
It’s a TRaP: Table randomization and protection against
In ACM SIGSAC Conference on
Computer and Communications Security, 2015.

L. Davi, A. Dmitrienko, S. Niirnberger, and A. Sadeghi.
efficient ad-hoc
instruction-level randomization for x86 and ARM. In 8th

function-reuse attacks.

Gadge me if you can: secure and
ACM Symposium on Information, Computer and Commu-
nications Security, 2013.

L. Davi, A. Sadeghi, D. Lehmann, and F. Monrose. Stitch-
ing the gadgets: On the ineffectiveness of coarse-grained
control-flow integrity protection. In 23rd USENIX Secu-
rity Symposium, 2014.

L. Davi, C. Liebchen, A.-R. Sadeghi, K. Z. Snow, and
F. Monrose. Isomeron: Code randomization resilient to
(Just-In-Time) return-oriented programming. In 22nd An-
nual Network and Distributed System Security Symposium,
2015.

T. de Raadt. openbsd-tech — Anti-ROP mechanism
in libc. https: / /marc. info / 71 =openbsd - tech&m =
146159002802803&w=2, 2016.

R. Dingledine. Tor security advisory: "relay early" traffic
confirmation attack. https://blog.torproject.org/blog/tor-
security-advisory-relay-early-traffic-confirmation-attack//.
R. Dingledine. Tor security advisory: Old tor browser bun-
dles vulnerable. https://lists.torproject.org/pipermail /tor-
announce/2013- August/000089.html, 2013.

I. Evans, S. Fingeret, J. Gonzalez, U. Otgonbaatar,
T. Tang, H. Shrobe, S. Sidiroglou-Douskos, M. Rinard, and
H. Okhravi. Missing the point(er): On the effectiveness of
code pointer integrity. In 36th IEEE Symposium on Secu-
rity and Privacy, 2015.

I. Evans, F. Long, U. Otgonbaatar, H. Shrobe, M. Rinard,
H. Okhravi, and S. Sidiroglou-Douskos.
On the weaknesses of fine-grained control flow integrity. In
ACM SIGSAC Conference on Computer and Communica-
tions Security, 2015.

S. Forrest, A. Somayaji, and D. H. Ackley. Building di-
verse computer systems. In 6th Workshop on Hot Topics

Control jujutsu:

in Operating Systems, 1997.

F. S. Foundation. Gcc manual — § 3.10, options that con-
trol optimization. https://gcc.gnu.org/onlinedocs/gece-5.
2.0/gcc/Optimize- Options.html#index-flunction-sections-
1103, 2015.

M. Franz. E unibus pluram: Massive-scale software diver-
sity as a defense mechanism. In Proceedings of the 2010
Workshop on New Security Paradigms, NSPW ’10, 2010.
G. Fresi Roglia, L. Martignoni, R. Paleari, and D. Bruschi.
Surgically returning to randomized lib(c). In 25th Annual
Computer Security Applications Conference, 2009.

(34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

[42]

[43]

(44]

(45]

(46]

[47]

(48]

[49]

[50]

J. Gionta, W. Enck, and P. Ning. HideM: Protecting the
contents of userspace memory in the face of disclosure vul-
nerabilities. In 5th ACM Conference on Data and Appli-
cation Security and Privacy, 2015.

C. Giuffrida, A. Kuijsten, and A. S. Tanenbaum. Enhanced
operating system security through efficient and fine-grained
address space randomization. In 21st USENIX Security
Symposium, 2012.

E. Goktas, E. Athanasopoulos, H. Bos, and G. Portokalidis.
Out of control: Overcoming control-flow integrity. In 35th
IEEE Symposium on Security and Privacy, 2014.

E. Goktas, E. Athanasopoulos, M. Polychronakis, H. Bos,
and G. Portokalidis. Size does matter: Why using gadget-
chain length to prevent code-reuse attacks is hard. In 23rd
USENIX Security Symposium, 2014.

A. Gupta, S. Kerr, M. S. Kirkpatrick, and E. Bertino.
Marlin: A fine grained randomization approach to defend
against ROP attacks.
2013.

D. Herrmann, R. Wendolsky, and H. Federrath. Website fin-
gerprinting: Attacking popular privacy enhancing technolo-

In Network and System Security.

gies with the multinomial naive-bayes classifier. In ACM
Workshop on Cloud Computing Security, 2009.

J. Hiser, A. Nguyen, M. Co, M. Hall, and J. Davidson.
ILR: Where’d my gadgets go. In 33rd IEEE Symposium
on Security and Privacy, 2012.

A. Homescu, S. Neisius, P. Larsen, S. Brunthaler, and
M. Franz. Profile-guided automatic software diversity. In
IEEE/ACM International Symposium on Code Generation
and Optimization, 2013.

T. Jackson, S. Brunthaler,
P. Larsen, and M. Franz. Large-scale automated software

A. Homescu, S. Crane,
diversity—program evolution redux. Dependable and Se-
cure Computing, IEEE Transactions on, 2015.

Itanium C++ ABI:
Member pointers. https://mentorembedded.github.io/cxx-
abi/abi.html#member-pointers, 1999-2015.

C. Kil, J. Jun, C. Bookholt, J. Xu, and P. Ning. Address
space layout permutation (ASLP): towards fine-grained
In 22nd Annual
Computer Security Applications Conference, 2006.

Itanium informal industry coalition.

randomization of commodity software.

G. Koppen. Include selfrando patches into our hardened
builds. https://trac.torproject.org/projects/tor /ticket /
17406, 2015.

P. Larsen, A. Homescu, S. Brunthaler, and M. Franz. SoK:
Automated software diversity. In 85th IEEE Symposium
on Security and Privacy, 2014.

C. Lattner and V. S. Adve. LLVM: A compilation frame-
work for lifelong program analysis & transformation. In
IEEE/ACM International Symposium on Code Generation
and Optimization, 2004.

C. Liebchen, M. Negro, P. Larsen, L. Davi, A.-R. Sadeghi,
S. Crane, M. Qunaibit, M. Franz, and M. Conti.
control: On the effectiveness of control-flow integrity under
stack attacks. In ACM SIGSAC Conference on Computer
and Communications Security, 2015.

Microsoft. Data execution prevention (DEP).
support.microsoft.com/kb/875352/EN-US/, 2006.
Microsoft. Exploitation Trends. Microsoft Security Intel-
ligence Report, 16, 2013.

Losing

http://

59



[51]
[52]
(53]
[54]

[55]

[56]

[57]

[58]

[59]

[60]

(61]

(62]

(63]

[64]

(65]

(6]

[67]

(68]

60

S. Nagy. Address sanitizer local root. http://seclists.org/
oss-sec/2016/q1/363, 2016.

Nergal. The advanced return-into-lib(c) exploits: PaX case
study. Phrack Magazine, 11, 2001.

G. Owenson. Analysis of the FBI Tor malware. http://
blog.owenson.me/analysis-of-the-fbi- tor-malware/, 2013.
PaX Team. Homepage of The PaX Team, 2001. http:
/ /pax.grsecurity.net.

M. Perry.
and global compromise.

Deterministic builds part one: Cyberwar
https:/ /blog.torproject.org/
blog/deterministic- builds- part-one- cyberwar- and- global-
compromise, 2013.

M. Perry.
ing study. https://blog.torproject.org/blog/isec-partners-
conducts-tor-browser-hardening-study, 2014.

K. Poulsen. FBI admits it controlled Tor servers behind
mass malware attack. https://www.wired.com/2013/09/
freedom-hosting-fbi/, 2013.

T. Ritter and A. Grant. iSEC Partners Final Report —
Tor Project Tor Browser Bundle. https://github.com/
iSECPartners / publications / tree / master / reports / Tor %
20Browser%20Bundle, 2014.

F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R.
Sadeghi, and T'. Holz. Counterfeit object-oriented program-

iSEC partners conducts Tor Browser harden-

ming: On the difficulty of preventing code reuse attacks in
C++ applications. In 36th IEEE Symposium on Security
and Privacy, 2015.

J. Seibert, H. Okhravi, and E. Séderstréom.
leaks without memory disclosures: Remote side channel at-
tacks on diversified code. In ACM SIGSAC Conference on
Computer and Communications Security, 2014.

Information

K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov.
AddressSanitizer: A fast address sanity checker. In
USENIX Annual Technical Conference, 2012.

F. J. Serna. The info leak era on software exploitation. In
Blackhat USA, 2012.

H. Shacham. The geometry of innocent flesh on the bone:
return-into-libc without function calls (on the x86). In
ACM SIGSAC Conference on Computer and Communi-
cations Security, 2007.

H. Shacham, M. Page, B. Pfaff, E. Goh, N. Modadugu, and
D. Boneh. On the effectiveness of address-space random-
ization. In ACM SIGSAC Conference on Computer and
Communications Security, 2004.

sinn3r. Here’s that FBI Firefox exploit for you (cve-
2013-1690). https://community.rapid7.com/community /
metasploit / blog /2013 / 08 / 07 / heres - that - fbi - firefox -
exploit-for-you-cve-2013-1690, 2013.

K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko,
C. Liebchen, and A. Sadeghi. Just-in-time code reuse: On
the effectiveness of fine-grained address space layout ran-

domization. In 34th IEEE Symposium on Security and
Privacy, 2013.
A. Sotirov. Heap Feng Shui in JavaScript. In Blackhat

Europe, 2007.
R. Strackx, Y. Younan, P. Philippaerts, F. Piessens,
S. Lachmund, and T. Walter.
crecy assumption. In 2nd European Workshop on System
Security, 2009.

Breaking the memory se-

(69]

[70]

(71]

(72]

(73]

(74]

[75]

[76]

[77]

(78]

[79]

L. Szekeres, M. Payer, T. Wei, and D. Song. SoK: Eternal
war in memory. In 34th IEEE Symposium on Security and
Privacy, 2013.

The Clang Team. Clang 3.8 documentation SafeStack.
http://clang.llvm.org/docs/SafeStack.html, 2015.

The Firefox Developers. Mozilla foundation security ad-
visory 2013-53: Execution of unmapped memory through
onreadystatechange event. https://www.mozilla.org/en-
US/security /advisories/mfsa2013-53/, 2013.

The Gitian developers. Gitian: a secure software distribu-
tion method. https://gitian.org/.

The Tor Project. The tor browser. https://www.torproject.
org/projects/torbrowser.html.

The Washington Post. Meet the woman in charge of the
FBDI’s most controversial high-tech tools. http://wapo.st/
1m7UMBQ, 2015.

C. Tice.
tual method dispathes. https:/ /gcc.gnu.org / wiki/
cauldron20127action=AttachFile&do=get&target=cmtice.
pdf, 2012.

M. Tran, M. Etheridge, T. Bletsch, X. Jiang, V. W. Freeh,
and P. Ning. On the expressiveness of return-into-libc at-

Improving function pointer security for vir-

tacks. In 14th International Symposium on Research in
Attacks, Intrusions and Defenses, 2011.

R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin. Binary
stirring: self-randomizing instruction addresses of legacy
x86 binary code. In ACM SIGSAC Conference on Com-
puter and Communications Security, 2012.

D. Williams, W. Hu, J. W. Davidson, J. D. Hiser, J. C.
Knight, and A. Nguyen-Tuong. Security through diversity:
Leveraging virtual machine technology. IEEE Security Pri-
vacy, 2009.

Zerodium. Our exploit acquisition platform. https://www.
zerodium.com/program.html, 2015.

Overview of the exploit used
by the FBI in 2013

In 2013, the FBI compromised a number of servers used

by Tor hidden services and used them to serve an exploit

to de-anonymize users of the Tor network [57]. When

the user visited one of the booby-trapped pages in Tor

Browser, the exploit abused an use-after-free vulnera-

bility of Firefox in order to enable arbitrary code execu-

tion [65]. The main payload of the exploit collected the

MAC address and the host name from the victim ma-

chine and sent the data to an attacker-controlled web

server, bypassing Tor [53]. That message also included a

unique ID provided by the booby-trapped page in order

to correlate a specific user to a specific visit. The at-
tacker then knew the public IP address, MAC address
and host name of every user that visited the booby-
trapped page.



JITGuard: Hardening Just-in-time Compilers with SGX

Tommaso Frassetto
CYSEC/Technische Universitat Darmstadt
tommaso.frassetto@trust.tu-darmstadt.de

Christopher Liebchen
CYSEC/Technische Universitidt Darmstadt
christopher.liebchen@trust.tu-darmstadt.de

ABSTRACT

Memory-corruption vulnerabilities pose a serious threat to mod-
ern computer security. Attackers exploit these vulnerabilities to
manipulate code and data of vulnerable applications to generate
malicious behavior by means of code-injection and code-reuse at-
tacks. Researchers already demonstrated the power of data-only
attacks by disclosing secret data such as cryptographic keys in the
past. A large body of literature has investigated defenses against
code-injection, code-reuse, and data-only attacks. Unfortunately,
most of these defenses are tailored towards statically generated
code and their adaption to dynamic code comes with the price of
security or performance penalties. However, many common appli-
cations, like browsers and document viewers, embed just-in-time
compilers to generate dynamic code.

The contribution of this paper is twofold: first, we propose a
generic data-only attack against JIT compilers, dubbed DOJITA.
In contrast to previous data-only attacks that aimed at disclos-
ing secret data, DOJITA enables arbitrary code-execution. Second,
we propose JITGuard, a novel defense to mitigate code-injection,
code-reuse, and data-only attacks against just-in-time compilers
(including DOJITA). JITGuard utilizes Intel’s Software Guard Ex-
tensions (SGX) to provide a secure environment for emitting the
dynamic code to a secret region, which is only known to the JIT
compiler, and hence, inaccessible to the attacker. Our proposal is
the first solution leveraging SGX to protect the security critical JIT
compiler operations, and tackles a number of difficult challenges.
As proof of concept we implemented JITGuard for Firefox’s JIT
compiler SpiderMonkey. Our evaluation shows reasonable overhead
of 9.8% for common benchmarks.

1 INTRODUCTION

Dynamic programming languages, like JavaScript, are increasingly
popular since they provide a rich set of features and are easy to
use. They are often embedded into other applications to provide
an interactive interface. Web browsers are the most prevalent ap-
plications embedding JavaScript run-time environments to enable

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CCS 17, October 30-November 3, 2017, Dallas, TX, USA

© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-4946-8/17/10...$15.00
https://doi.org/10.1145/3133956.3134037

David Gens
CYSEC/Technische Universitidt Darmstadt
david.gens@trust.tu-darmstadt.de

Ahmad-Reza Sadeghi
CYSEC/Technische Universitat Darmstadt
ahmad.sadeghi@trust.tu-darmstadt.de

website creators to dynamically change the content of the current
web page without requesting a new website from the web server.
For efficient execution modern run-time environments include just-
in-time (JIT) compilers to compile JavaScript programs into native
code.

Code-injection/reuse. Unfortunately, the run-time environment
and the application that embeds dynamic languages often suffer
from memory-corruption vulnerabilities due to massive usage of un-
safe languages such as C and C++ that are still popular for compatibil-
ity and performance reasons. Attackers exploit memory-corruption
vulnerabilities to access memory (unintended by the programmer),
corrupt code and data structures, and take control over the targeted
software to perform arbitrary malicious actions. Typically, attackers
corrupt code pointers to hijack the control flow of the code, and to
conduct code-injection [2] or code-reuse [45] attacks.

While code injection attacks have become less appealing, mainly
due to the introduction of Data Execution Prevention (DEP) or
writable xor executable memory (W®X), state-of-the-art attacks de-
ploy increasingly sophisticated code-reuse exploitation techniques
to inject malicious code-pointers (instead of malicious code), and
chain together existing instruction sequences (gadgets) to build the
attack payload [51].

Code-reuse attacks are challenging to mitigate in general be-

cause it is hard to distinguish whether the execution of existing
code is benign or controlled by the attacker. Consequently, there
exists a large body of literature proposing various defenses against
code-reuse attacks. Prominent approaches in this context are code
randomization and control-flow integrity (CFI). The goal of code
randomization [34] schemes is to prevent the attacker from learning
addresses of any gadgets. However, randomization techniques re-
quire extensions [5, 7, 16, 17, 24] to prevent information-disclosure
attacks [18, 50, 52]. Control-flow integrity (CFI) [1] approaches
verify whether destination addresses of indirect branches com-
ply to a pre-defined security policy at run time. Previous work
demonstrated that imprecise CFI policies in fact leave the system
vulnerable to code-reuse attacks [8, 9, 14, 19, 25, 26, 49]. Further,
defining a sufficiently accurate policy for CFI was shown to be
challenging [21].
Data-only attacks. In addition to the aforementioned attack
classes, data-only attacks [13] have been recently shown to pose a
serious threat to modern software security [30]. Protecting against
data-only attacks in general is even harder because any defense
mechanism requires the exact knowledge of the input data and
the intended data flow. As such, solutions that provide memory
safety [43, 44] or data-flow integrity [10] generate impractical per-
formance overhead of more than 100%.

61



JIT attacks. Existing defenses against the attack techniques men-
tioned above are mainly tailored towards static code making their
adoption for dynamic languages difficult. For example, the JIT-
compiler regularly modifies the generated native code at run time
for optimization purposes. On the one hand, this requires the code
to be writable, and hence, enables code-injection attacks. On the
other hand, it makes state-of-the-art defenses challenging to adopt,
either due to the increased performance overhead in the case of
CFI [47] (+9.6%; in total 14.6%)!, or due to unclear practicality of
code-pointer hiding [16]. In particular, the authors point out that
the overhead for the JIT version is much higher and not every
defense deployed for static code was applied to the JIT code [16].
Further, the attacker controls the input of the JIT compiler, and
can input a program that is compiled to native code containing
all required gadgets. Finally, the attacker can tamper with the in-
put of the JIT compiler to generate malicious code, as we show in
Section 3.

Goals and Contributions. In this paper we present our defense,
JITGuard, that hardens JIT compilers for browsers against disclo-
sure attacks. To motivate our defense we first propose a generic
data-only attack against the JIT compiler that allows to execute
arbitrary code, and can bypass all existing code-injection and code-
reuse defenses. Concurrently to our work, researchers published a
data-only attack that targets internal data structures of Microsoft’s
JIT Engine [57]. As we discuss in Section 8.3 JITGuard prevents
this attack as well as our DOJITA. To protect the JIT compiler
against run-time attacks without relying on additional defenses
like code randomization or control-flow integrity, JITGuard uti-
lizes Intel’s Software Guard Extensions (SGX) [32] to execute the
JIT-code compiler in an isolated execution environment. This en-
ables JITGuard to hide the location of JIT-code in memory while
simultaneously preventing an adversary from launching data-only
attacks on the JIT-compiler. In contrast to previous work we do not
require expensive analysis of the generated program to construct
a CFI policy [47], or synchronization between processes [54], or
repetitive system calls to change memory permission [16, 41] while
providing protection against data-only attacks.

To summarize, our main contributions are:

e A generic data-only attack against JIT compilers that can by-
pass all existing JIT code protection techniques. In contrast to a
previous data-only attack [30], which only allows to manipulate
data flow (e.g., to leak cryptographic keys), our attack allows to
execute arbitrary code without manipulating any code pointers.

e A novel JIT compiler protection, JITGuard, which hardens JIT
compilers against code-injection, code-reuse, and data-only at-
tacks. JITGuard utilizes SGX to isolate the JIT compiler from the
surrounding application. As we elaborate in Section 5 this raises
a number of challenges and is technically involved.

e A proof-of-concept implementation of JITGuard for Firefox’s
JavaScript JIT compiler SpiderMonkey and real-world SGX hard-
ware. We explain in detail how we solve several performance-
related challenges that arise when executing the JIT compiler in
an enclave.

!Compared to MCFI [46], a CFI implementation by the same author for static code.

62

Application

‘ Application-specific functionality ‘

t 4
JIT
Code

’ Bytecode

A

r—-——=—r——- —_——rT-====== = =1

5 i

) I
JavaScript L JIT
Source Vo R i Compiler 5
I
I
I
I
I

JavaScript Engine

Legend: Code | ’ Data ‘

Figure 1: Main components of a JavaScript JIT engine.

e An extensive performance and security evaluation for JITGuard.
We report an average overhead of 9.8% for the integrated bench-
marking suites of SpiderMonkey.

2 BACKGROUND AND RELATED WORK

In this section we briefly explain the technical concepts required to
understand the remainder of this paper. We start with a short intro-
duction of Intel’s Software Guard Extensions (SGX) [32] which con-
stitutes the trusted computing base for our defense tool JITGuard.
Then we explain the basic principles of just-in-time compilers for
browsers, which is the main use case for our proof-of-concept im-
plementation in this paper.

2.1 Software Guard Extensions

SGX is a hardware extension enabling isolated execution environ-
ments called enclaves. Enclaves are created within a user-mode
process and cannot be accessed by any (higher privileged) system
entity, including the creator process and the OS. This is enforced
by the CPU through access control. In particular, the memory of
an enclave can only be accessed by the code executed within the
enclave. However, this policy can only be enforced while the en-
clave memory resides within the CPU-internal memory (cache). To
protect enclave memory outside of the CPU, it is encrypted and
integrity-protected with an enclave-specific key. The encryption
prevents attackers from accessing any secrets that are stored within
enclaves. Before the enclave memory is loaded into the CPU, SGX
verifies its integrity to ensure that an adversary did not include any
modifications.

The code executed within an enclave runs in the context of the
creating process. Thus, it can access the process memory, e.g., for
communicating with the host. SGX ensures that the enclave is
isolated from other processes, enclaves, and the operating system.

2.2 JIT Engines

JIT engines provide a run-time environment for high-level scripting
languages, allowing the script to interact with application-specific



functionality. They leverage so-called just-in-time (JIT) compilers
to transform an interpreted program or script into native code at
run time. Browsers in particular make heavy use of JIT compilers
to increase the performance of JavaScript programs. JavaScript is a
high-level scripting language explicitly designed for browsers to
dynamically change the content of a website, e.g., in reaction to user
input. In general, JIT engines consist of at least three main com-
ponents, as shown in Figure 1: (D an interpreter, (2) a JIT compiler
and (3) a garbage collector.

(D Interpreter. The purpose of JIT compilers is to increase the
execution performance of JavaScript by compiling the script to
native code. Since compilation can be costly, usually not all of
the scripting code is compiled. Instead, JIT engines include an
interpreter which transforms the input program into unoptimized
bytecode, which is then executed by the interpreter. During the
execution of the bytecode, the interpreter profiles the JavaScript
program to identify parts (i.e., usually functions) of the code which
are executed frequently (hot code). When the interpreter identifies
a hot code path, it estimates if compilation to native code would be
more efficient than continuing to interpret the bytecode. If this is
the case, it passes the hot code to the JIT compiler.

(@ JIT compiler. The JIT compiler takes the bytecode as input
and outputs corresponding native machine code. Similar to regu-
lar compilers, the JIT compiler first transforms the bytecode into
an intermediate representation (IR) of the program, which is then
compiled into native code, also called JIT code. In contrast to the
bytecode, which is interpreted in a restricted environment through
a virtual machine, this native code is executed directly by the pro-
cessor that runs the browser application. To ensure that malicious
JavaScript programs cannot harm the machine of the user, the JIT
compiler limits the capabilities of the emitted JIT code. In partic-
ular, the compiled program cannot access arbitrary memory, and
the compiler does not emit potentially dangerous instructions, e.g.,
system call instructions. Further, the emitted native code is con-
tinuously optimized, and eventually, de-optimized when the JIT
compiler determines that this is not needed anymore. Because the
JIT compiler has to write the emitted native code to memory as
part of its output, the most straightforward way of setting up JIT
code pages is to set them as read-write-executable. Since such pages
represent an easy target for attackers, browsers started mapping
JIT pages as writable while the compiler emits the native code, and
re-mapping the JIT pages to non-writable afterwards [41]. How-
ever, there is still a window of opportunity for an attacker while
the compiler is emitting the code.

(3 Garbage Collector. The last major component is the garbage
collector. In contrast to C and C++, in JavaScript the memory is man-
aged automatically. This means that the garbage collector tracks
memory allocations and releases unused memory when it is no
longer needed.

2.3 JIT-based Attacks and Defenses

Typically attacks on JIT compilers exploit the read-write-executable
JIT memory in combination with the fact that attackers can in-
fluence the output of the JIT compiler by providing a specially

JavaScript
4 N\
function foo() {
var y = 0x3C909090 A 0x90909090;
}
. J
Native Code
4 N\
Address Opcodes Disassembly
0: B8 9090903C mov eax, 0x3C909090
L 5: 35 90909090 Xor eax, 0x90909090 )

Unaligned Native Code

Address Opcodes Disassembly
1: 920 nop
2: 920 nop
3: 90 nop
4: 3C35 cmp al, 35
6: 920 nop
T 920 nop
8: 920 nop
9: 920 nop
. J

Figure 2: During JIT spraying the attacker exploits that large constants are
directly transferred into the native code. By jumping into the middle of an
instruction the attacker can execute arbitrary instructions that are encoded
into large constants.

crafted input program. In the popular pwn2own exploiting con-
test, Gong [28] injected a malicious payload into the JIT memory
to gain arbitrary code execution in the Chrome browser without
resorting to code-reuse attacks like return-oriented programming
(ROP) [51]. To prevent code-injection attacks, WX was adapted
for JIT code [11, 12, 16, 41]. However, as discussed in the previous
section, JIT code pages must be changed to writable for a short time
when the JIT compiler emits new code, or optimizes the existing JIT
code. Song et al. [54] demonstrated that this small time window can
be exploited by an adversary to inject a malicious payload. They
propose to mitigate this race condition by splitting the JIT engine
into two different processes: an untrusted process which executes
the JIT code, and a trusted process which emits the JIT code. Their
architecture prevents the JIT memory from being writable in the
untrusted process at any point in time. Since the split JIT engine
now requires inter-process communication and synchronization
between the two processes, the generated run-time overhead can
be as high as 50% for JavaScript benchmarks. Further, this approach
does not prevent code-reuse attacks.

Code-reuse attacks chain existing pieces of code together to ex-
ecute arbitrary malicious code. JIT engines facilitate code-reuse
attacks because the attacker can provide input programs to the
JIT compiler, and hence, influence the generated code to a certain
degree. However, as mentioned in Section 2.2, the attacker cannot
force the JIT compiler to emit arbitrary instructions, e.g., system
call instructions which are required for most exploits. To bypass
this restriction Blazakis [6] observed that numeric constants in
a JavaScript program are copied to the JIT code, as illustrated in
Figure 2: an adversary can define a JavaScript program which as-
signs large constants to a variable, here the result of 9x3C909090
xor 0x90909090 is assigned to the variable y. When the compiler
transforms this expression into native code, the two constants are
copied into the generated instructions. This attack is known as JIT

63



spraying and enables the attacker to inject 3-4 arbitrary bytes into
the JIT code. By forcing the control flow to the middle of the mov
instruction, the CPU will treat the injected constant bytes as an
instruction and execute them.

JIT spraying can be mitigated by constant blinding, i.e., masking
large constant C through xor with a random value R at compile
time. The JIT compiler then emits an xor instruction to unblind the
masked constant before using it ((C®R)® R = C & 0 = C). While
constant blinding indeed prevents JIT spraying it decreases the
performance of the JIT code. Further, Athanasakis et al. [4] demon-
strated that JIT spraying can also be performed with smaller con-
stants, and that constant blinding for smaller constants is impracti-
cal due to the imposed run-time overhead. Recently, Maisuradze
et al. [36] demonstrated a JIT-spraying attack by controlling the
offsets of relative branch instructions to inject arbitrary bytes into
the JIT code.

Another approach to mitigate JIT-spraying is code randomiza-
tion. Homescu et al. [29] adopted fine-grained randomization for
JIT code. However, similar to static code, code randomization for
JIT code is vulnerable to information-disclosure attacks [52]. While
Crane et al. [16] argued that leakage resilience based on execute-
only memory can be applied to JIT code as well, they do not im-
plement code-pointer hiding for the JIT code which makes the per-
formance impact hard to estimate. Tang et al. [55] and Werner et
al. [59] proposed to prevent information-disclosure attacks through
destructive code reads. Their approach is based on the assumption
that benign code will never read from the code section. Destructive
code reads intercept read operations to the code section, and over-
write every read instruction with random data. Hence, all memory
leaked by the attacker is replaced by random data, rendering it unus-
able for code-reuse attacks. However, Snow et al. [53] demonstrated
that this mitigation is ineffective in the setting of JIT code. In par-
ticular, the attacker can use the JIT compiler to generate multiple
versions of the same code by providing a JavaScript program with
duplicated functions. Upon reading the code section the native code
of the first function will be overwritten while the other functions
are intact and can be used by the attacker to conduct a code-reuse
attack.

Ansel et al. [3] designed a generic sandboxing approach based
on Software-based Fault Isolation (SFI), which prevents the JIT-
compiled code from modifying other parts of the program. The
authors do not quote a single overhead figure, however, almost all
of their benchmarks have an overhead greater than 20%.

Niu et al. [47] applied CFI to JIT code and found that it generates
on average 14.4% run-time overhead and does not protect against
data-only attacks which do not tamper with the control flow but
manipulate the data flow to induce malicious behavior.

3 OUR DATA-ONLY ATTACKS ON JIT
COMPILERS

Overview. As mentioned in the previous Section, existing JIT
protections only aim to prevent code-injection or code-reuse at-
tacks. However, in our preliminary experiments we observed that
arbitrary remote code execution is feasible by means of data-only
attacks which corrupt the memory without requiring to corrupt

64

@ Exploit
Vulnerability

Vulnerable
Application
@ Trigger Native
Compiler > JIT Compiler
Attacker ' ) Generate
@ Inject attacker IR Inout
into existing IR | P
IR
@ Trigger Output (6
execution

Native Code

Figure 3: DOJITA enables the attacker to execute arbitrary code through a
data-only attack. In particular, the attacker manipulates the IR which is then
used by the JIT compiler to generate native code that includes a malicious
payload.

any code pointers. We implemented an experimental data-only at-
tack against JIT compilers, coined DOJITA (Data-Only JIT Attack),
that manipulates the intermediate representation (IR) to trick the
JIT compiler into generating arbitrary malicious payloads. Our ex-
periments underline the significance of data-only attacks, in the
presence of defenses against control-flow hijacking, and motivate
the design of our defense JITGuard. Figure 3 shows the high-level
idea of DOJITA:

The attacker (D) exploits a memory-corruption vulnerability to
read and write arbitrary data memory; (2) identifies a hot function
F in the input program, which will be compiled to native code;
(3 during the compilation of F the JIT compiler will generate the
corresponding IR; the attacker discloses the memory address of the
IR in memory which is commonly composed of C++ objects; (4) in-
jects crafted C++ objects (the malicious payload) into the existing
IR. (5) Finally the JIT compiler uses the IR to generate the native
code (o). Since the IR was derived from the trusted bytecode input,
the JIT compiler does not check the generated code again. (7) Thus,
the generated native code now contains a malicious payload that is
executed upon subsequent invocations of the function F.

Details. For our experiments we chose the JavaScript engine
of Internet Explorer, called Chakra [38]. Our goal is to achieve
arbitrary code execution by exploiting a memory-corruption vul-
nerability without manipulating the JIT code or any code pointers.
Further, we assume that the static code and the JIT code are pro-
tected against code-reuse and code-injection attacks, e.g., by either
fine-grained code randomization [16], or fine-grained (possibly
hardware-supported) control-flow integrity [31, 47].

For our attack against Chakra we carefully analyzed how the
JIT compiler translates the JavaScript program into native code.
We found that the IR of Chakra is comprised of a linked list of
IR: :Instr C++ objects where each C++ object embeds all informa-
tion, required by the JIT compiler, to generate a native instruction or
an instruction block. These objects contain variables like m_opcode
to specify the operation, and variables m_dst, m_src1, and m_src2



IR::Instr T---»IR::Instr —’—> IR::Instr
______ 1

m_next m_next m_next
m_opcode m_opcode m_opcode
m_dst m_dst m_dst
m_srcl m_srcl m_srcl
m_src2 m_src2 m_src2

IR::Instr _|—> IR::Instr _|—> IR::Instr

m_next m_next m_next
m_opcode m_opcode m_opcode
m_dst m_dst m_dst
m_srcl m_srcl m_srcl
m_src2 m_src2 m_src2

Figure 4: The IR of Chakra consists of a linked list of IR: Instr C++ objects. The
attacker injects instructions by overwriting the m_next pointer of a benign
object (dotted line) to point to a linked list of crafted objects.

to specify the operands for the operation. To achieve arbitrary code
execution, we carefully craft our own objects, and link them to-
gether. Figure 4 shows the IR after we injected our own IR: :Instr
objects (lower part of the figure), by overwriting the m_next data
pointer of the benign IR: :Instr objects (upper part of the figure).
When the JIT compiler uses the linked list to generate the native
code it will include our malicious payload. It is noteworthy that
m_opcode cannot specify arbitrary operations but is limited to a
subset of instructions like (un-)conditional branches, memory ac-
cesses, logic, and arithmetic instructions. This allows us to generate
payloads to perform arbitrary computations, and to read and write
memory. However, for a meaningful attack we have to interact with
the system through system calls. We inject a call instruction to
the system call wrapper functions which are provided by system
libraries. To resolve the addresses of these function, we leverage a
similar approach as JIT-ROP [52]. In particular, we first disclose the
address of GetProcAddress() which is a function that takes the
name of an exported library function as an argument and returns
its address. This enables our payload to resolve and call arbitrary
functions, and hence, interact with the system.

Our proposed data-only attack against the JIT compiler cannot
be mitigated by any state-of-the-art defenses or defenses proposed
in the literature [16, 47]. The reason is that these defenses cannot
distinguish the benign IR from the injected IR.

Implementation. For our proof-of-concept of DOJITA we imple-
mented an attack framework that allows the attacker to specify
an arbitrary attack payload. Our framework parses and compiles
the attack payload to the ChakraCore IR, i.e., the framework au-
tomatically generates C++ memory objects that correspond to the
instruction of the attack payload. Next, the framework exploits
a heap overflow in Array.map() (CVE-2016-7190), which we re-
introduced to the most recent public version of ChakraCore (version
1.4), to acquire the capability of reading and writing arbitrary mem-
ory. After disclosing the internal data-structures of the JIT compiler,
we modify a number of data pointers within these structures to
include our malicious IR. The JIT compiler will then iterate through

the IR memory objects, and generate native code. While the injec-
tion of malicious IR into the benign IR depends on a race condition,
we found that the attack framework can reliably win this race by
triggering the execution of the JIT compiler repeatedly. Appendix A
contains an example payload that creates a file and writes arbitrary
content to it.

Our proposed data-only attack against the JIT compiler cannot
be mitigated by any state-of-the-art defenses or defenses proposed
in the literature [16, 47]. The reason is that these defenses cannot
distinguish the benign IR from the injected IR.

In our testing, DOJITA succeeded 99% of the times.

Comparison to Related Work. Independently from our work,
Theori [57] published a similar attack that also targets the internal
data structures of Microsoft’s JIT compiler. Their attack targets a
temporary buffer which is used by the JIT compiler during com-
pilation to emit the JIT code. This temporary buffer is marked as
readable and writable. However, once the JIT compiler generated
all instruction from the IR, it relocates the content of the tem-
porary buffer into the JIT memory which is marked as readable
and executable. By injecting new instructions into this temporary
buffer one can inject arbitrary code into the JIT memory. Microsoft
patched the JIT compiler to include a cyclic redundancy checksum
of the emitted instructions during compilation. The JIT code is only
executed if the checksum of the relocated buffer corresponds to the
original checksum.

This defense mechanism which was recently added by Microsoft
does not prevent our attack. While the attack by Theori [57] is simi-
lar to ours, we inject our malicious payload at an earlier stage of the
compilation. As a consequence, the checksum, which is computed
during compilation, will be computed over our injected IR. Since
we do not perform any modifications in later stages, the checksum
of the relocated buffer is still valid and the JIT compiler cannot
detect our attack.

In the remainder of this paper, we present our novel defense
that leverages Intel’s SGX to mitigate code-injection, code-reuse,
and data-only attacks against just-in-time compilers (including
DOJITA).

4 THREAT MODEL AND ASSUMPTIONS

The main goal of this paper is to mitigate attacks that target JIT code
generation and attacks exploiting the JIT-compiled code. Therefore,
our threat model and assumptions exclude attacks on the static
code. Our threat model is consistent with the related work in this
area [6, 16, 36, 47, 54].

o Static code is protected. State-of-the-art defenses against code-
injection and code-reuse attacks for static code are deployed and
active. In particular, this means that code-injection is prevented
by enforcing DEP [37], and code-reuse attacks are defeated by
randomization-based solutions [16, 17], or (hardware-assisted)
control-flow integrity [1, 31, 58]. Additionally, we assume that
the static code of the application and the operating system are
not malicious.

e Data randomization. The targeted application employs Ad-
dress Space Layout Randomization (ASLR) [48]. This prevents an
adversary from knowing any addresses of allocated data regions
a priori and enables us to hide sensitive data from the attacker.

65



e Secure initialization. An adversary can only attack JITGuard
after its initialization phase.

e Memory-corruption vulnerability. The target program suf-
fers from at least one memory-corruption vulnerability. The
attacker can exploit this vulnerability to disclose and manipulate
data memory of known addresses. This is a common assumption
for browser exploits [14, 49, 52].

o Scripting Engine. An adversary can utilize the scripting engine
to perform arbitrary (sandboxed) computations at run time, e.g.,
adjust the malicious payload based on disclosed information.

The goal of the adversary is to gain the ability to execute arbitrary
code in the browser process. The attacker can then try and further
compromise the system, or leak sensitive information from the web
page (e.g., launching the attack from some malicious advertisement
code). The use of some defense mechanisms, like sandboxing [15,
27], can make the former attack harder. However, such defenses do
not prevent the latter attack and are orthogonal to JITGuard.

We also note that any form of side-channel, e.g., cache and timing
attacks to leak randomized memory addresses, or hardware attacks
are beyond the scope of this paper.

5 DESIGN OF JITGUARD

Our main goal is to harden the JIT compiler against code-injection,
code-reuse and data-only attacks. To achieve this we isolate all
critical components of the JIT compiler from the main application,
potentially containing a number of exploitable vulnerabilities. The
isolation is enforced through hardware by utilizing SGX. Note, that
intuitively one can isolate the whole JIT engine with SGX. However,
the JIT code frequently interacts with static code, and since every
call requires a context switch between enclave and host process,
this would result in a tremendous amount of overhead. To avoid
this overhead we decompose the JIT engine to execute the JIT code
outside of the enclave. To prevent the attacker from exploiting the
JIT code to launch code-injection or code-reuse attacks we hide the
JIT code by using randomization. Further, we mitigate information
disclosure attacks by building an indirection that transfers the
control flow between the static application code and the JIT code
without disclosing the address of the JIT code through trampolines.
Figure 5 shows our design of JITGuard in more detail:

(D We use SGX to isolate the JIT compiler and its data from the
rest of the application. As a consequence the attacker can no longer
exploit memory-corruption vulnerabilities in the host process to
launch attacks against the JIT compiler, as described in Section 3.
(2) We randomize the JIT code and JIT stack memory addresses to
protect against code-injection and code-reuse attacks and prevent
the attacker from locating the JITGuard-Region. Even though our
randomization does not prevent an adversary from injecting code,
e.g., by compiling a specially crafted JavaScript program [6, 36],
the attacker cannot disclose the address of the injected code which
is required to redirect the control flow to the injected code. The
same holds for code-reuse attacks where the attacker requires the
addresses of the gadgets.

(3) We leverage segmentation registers to build an indirection
layer to prevent information-disclosure attacks that target the tran-
sition between static and JIT code. This is necessary since the
attacker is able to disclose data at known addresses (see Section 4).

66

Application

JITGuard

(2; Randomized

| |

| |

IO—' ; JITGuard- | !

3 Indirection Region :
Stack | T~~~ | 77T 1

; T JIT I

> Trampolines } |

Static [ RS Stack |

Code ! :‘ T ‘ [

1

|

|

|

|

1) SGX Enclave Code

Garbage
Collector

| T Fosmsmmmmees !
i ines! | !
|

I

Interpreter

N LI SR SR -
Legend:
| Protection | | Code | ’ Data ‘ iDoubIe Mappingi
Figure 5: Design of JITGuard
Virtual Physical
Memory Memory
4 R\ ' R\
Vulnerable RX .
code R @ N
» RW -
Trusted @
code ’
N J N J

Figure 6: The same region of physical memory is mapped twice in the virtual
memory with different permissions.

Thus, we utilize trampolines which contain jump instructions that
obtain the address of the JIT code using an offset from a segmen-
tation register. The content of the segmentation register itself is
available only through a system call, hence an adversary needs to
launch a successful attack against the JIT compiler to disclose it. The
compiler needs to be able to efficiently update the indirection layer;
however, using read-write-executable permissions would allow an
attacker to simply inject new code into the trampoline mapping. To
allow the former without the latter, we employ a double mapping
of the trampolines (see Figure 6).

Using this technique, the same region in physical memory (9) is
mapped twice in the virtual address space of the process. The first
mapping (5) is executable but not writable. The second mapping ()
is writable but not executable, and its address is protected through
randomization. The compiler uses the second mapping to update
the trampolines (e.g., when a new function is compiled) and the
indirection layer, while the (potentially vulnerable) static code uses
the executable trampoline mapping. Although an adversary has
access to the executable mapping, the address of JIT code cannot be
leaked through the executable trampoline since it is protected using



the segmentation register. In the following we present a proof-of-
concept implementation of JITGuard based on the JavaScript engine
of Firefox called SpiderMonkey. We will explain in detail how we
tackle the challenge of decomposing the JIT engine, adapting the
JIT compiler to SGX, and preventing the JIT compiler and JIT code
from leaking the location of the JITGuard-Region.

Our modifications consist of 2 673 additional lines of code, com-
pared to 521 000 lines of C/C++ code in the SpiderMonkey source.

6 ISOLATING THE JIT COMPILER WITH SGX

The core component of JITGuard is an SGX enclave which contains
the code and data of the JIT compiler and the randomization se-
crets. We will use enclave to refer to this specific enclave. While
enclaves are well suited for isolating trusted code and data, the
SGX threat model assumes everything outside of the enclave is
untrusted. Therefore, SGX requires a context switch to execute
code outside of the enclave. This is an expensive operation and
makes the straightforward approach of isolating the whole JIT en-
gine (including the generated JIT code) impractical because the JIT
code frequently interacts with static application code. In particular,
we measured up to 600 interactions per millisecond in our tests.
However, our threat model (Section 4) is different to that of SGX:
we assume that the code running outside the enclave (static code
and operating system) is not malicious. This allows us to relax
some of the constraints of regular enclave applications. Instead of
using SGX to isolate the full JIT engine, we use it to isolate the
security-critical components (JIT compiler), and to securely store
the randomization secret. This approach enables us to bootstrap
the JITGuard-Region, whose address is unknown to the attacker.
By emitting the JIT code to the JITGuard-Region it can be executed
securely outside the enclave, and we avoid disclosing the location
of the JITGuard-Region by using trampolines. Thus, the JIT code
can interact with the static application code without requiring SGX
context switches.

In the following, we provide more details on how we initialize
JITGuard and the interaction of the JIT compiler in the enclave
with the rest of the JIT engine.

6.1 Initialization

JITGuard is initialized at the start of the program before the attacker
can interact with the vulnerable application. Hence, we can launch
the initialization phase from the static code part of the application.
The initialization component of JITGuard first allocates two mem-
ory regions, the trampoline and the JITGuard-Region, and then
starts the enclave.

JITGuard chooses the location of the JITGuard-Region perfectly
at random and uses it to store the JIT code, the JIT stack, and the
writable mapping of the trampolines. The protection of the JIT
code and stack is based on the assumption that the location of the
JITGuard-Region remains secret throughout the execution of the
application. JITGuard achieves this by passing the randomization
secret to the enclave and setting all memory that was used during
the initialization phase to zero. Henceforth, all memory accesses to
the JITGuard-Region are mediated through the enclave to prevent
the address from being written to memory which is accessible to
the attacker.

The second memory region is the executable mapping of the
trampolines. This double mapping of the trampolines is necessary
because JITGuard needs to modify the trampolines during run time
and the attacker can infer the address of the executable trampo-
lines based on pointers used by the static code. Without this double
mapping, a less secure solution would be to switch the memory
region between read-writable and read-executable. However, an ad-
versary could still exploit the short time window while the memory
is writable to inject malicious code into the trampoline region [54].
We provide more details on our trampoline mechanism in Section 7.

Finally, JITGuard sets up the JIT compiler enclave providing the
address of the JITGuard-Region as a parameter. As mentioned in
Section 2.2, the JIT engine consists of different components. How-
ever, we encapsulate only the JIT compiler inside an enclave. While
switching between enclave and host execution has some overhead,
we carefully designed JITGuard to achieve practical performance,
by executing the rest of the components of the JIT engine outside
the enclave. In our security analysis (Section 8) we explain how
JITGuard securely interacts with the host process.

6.2 Run Time

JITGuard requires a few modifications to the JIT compiler: (1) to be
compatible to SGX, (2) to prevent disclosure of the location of the
JITGuard-Region, and (3) to emit the JIT code to the randomized
memory region.

6.2.1 SGX Compatibility. To make the JIT compiler compatible
with SGX we created a custom system call wrapper and adjusted
the internal memory allocator. As mentioned in Section 2.1, the
operating system is considered untrusted in the SGX design, which
is why the code inside of an enclave cannot use the system call in-
struction. To issue a system call, the enclave code has to first switch
execution to the host process, and then call a wrapper function
of a system library. The SGX developer framework provides func-
tionality to easily call outside functions from the enclave. Outside
functions can then invoke any system call. However, for system
calls in JITGuard we abstained from using the functions generated
by the SDK for two reasons: first, the context switch function of
the developer framework saves the complete state (i.e., all registers)
to enclave memory and then clears the content of all registers to
prevent information leakage to the host process or the operating
system. This is not necessary in our case because we consider the
attacker can only access application memory; second, by issuing a
system call through a library function, data might be leaked outside
of the enclave which then becomes accessible to the attacker. To
avoid both cases, we implemented our own system call wrapper
which stores the required parameters in the designated registers
inside the enclave, and then exits the enclave to issue the syscall
instruction (without storing and clearing the state or writing any-
thing to the application memory). Further, we adjusted the internal
memory allocator of the JIT compiler to use pre-allocated memory
within the enclave to avoid leaking information to the application
memory.

6.2.2 Leakage-resilience. Another challenge is to prevent the JIT
compiler from leaking the address of the JITGuard-Region. Since
the JIT compiler consists of a huge code base it is hard to verify that

67



no instruction leaks this address. We avoid manual inspection of
the whole source code of the JIT compiler by employing a fail-safe
technique that is based on a fake pointer. In particular, JITGuard
converts the real pointer to the JITGuard-Region into a fake pointer
by adding a random offset during the creation of the enclave. We
then modify each function that requires access to the JITGuard-
Region (e.g., to emit the JIT code or modify the trampoline) to first
convert the fake pointer back to the original pointer. This happens
as late as possible, e.g., in the very C++ statement that writes a jump
target to the JIT-compiled code page. At the same time we verify
that the code which uses the pointer does not leak the pointer to
memory outside of the enclave. This technique is fail safe because
even if a non-verified function within the enclave would leak the
address, it would only leak the fake pointer. However, the fake
pointer is useless to the attacker without the random offset, which
is stored securely inside enclave memory.

6.2.3 JIT Code Generation. The JavaScript interpreter con-
stantly profiles the code while it executes it. Once the profiler
determines it would benefit the performance to compile the inter-
preted code into native code, it calls the JIT compiler. In JITGuard
this requires the interpreter to issue a context switch to the enclave
and to pass the interpreted code as a parameter. The advantage
of this design is that we have a single point of entry for the JIT
compiler. SGX allows the enclave to access the host memory, so
the compiler in the enclave can directly access the data in the host
memory without the need to copy the data first.

In addition to that, the JIT compiler requires a small number of
functions from the host, e.g., such as timing information, for which
we add dedicated enclave exit points to switch execution to the
host process.

6.3 SpiderMonkey

The previously mentioned implementation details are not specific to
SpiderMonkey, but are valid for most JIT compilers. In the following
we discuss some SpiderMonkey-specific aspects we encountered
while implementing JITGuard.

SpiderMonkey features a second JIT compiler, called IonMonkey.
IonMonkey takes the native code of the regular JIT compiler, called
the Baseline compiler, and speculatively optimizes it (e.g., assuming
that the variables will have the same type as previous invocations).
For our proof-of-concept implementation of JITGuard we disabled
IonMonkey. However, from a conceptual point of view, lonMonkey
can be extended in the same way as the Baseline compiler.

Further, SpiderMonkey recently adopted WeX for the JIT code
which simplified extending SpiderMonkey with JITGuard. The rea-
son is that JIT compilers which do not employ WeX expect to be
able to modify the JIT code at any time, and thus modifications
are spread over multiple functions. In JITGuard the native code
is emitted to the JITGuard-Region, which requires us to adjust all
functions that modify the JIT code. This is limited to a small number
of functions in SpiderMonkey. On the other hand, JIT compilers
that do not support WX can be extended with JITGuard as well,
although we would expect additional engineering effort because of
the more widespread modifications to the JIT code.

68

Static Code 8 JITCode
fun: : Call Trampoline @) jit_fun: ®
g ot IR S
Native Stack JIT Stack

rsp + 0x00 : value

rsp + 0x08 : value
rsp + 0x10 : value

rsp + 0x00 : value
“*® rsp + 0x08 : value

rsp + 0x10 : value
T . @ Jump Table

Direct disclosure offset : address of jit_fun

Figure 7: JITGuard mediates control-flow transfers from static code to the JIT
code through call trampolines. In this way, function pointers to the random-
ized JIT region are hidden from an adversary.

7 TRANSFERRING CONTROL FLOW
BETWEEN JIT AND STATIC CODE

JITGuard randomizes the memory location of the JIT code, JIT
stack, and the writable trampoline mapping to protect them from an
adversary with access to the host process memory. However, during
run time the JIT code closely interacts with the static code inside
the host process. Indeed, we counted the number of control-flow
switches between the static code and the JIT code and measured up
to 600 times per millisecond in our testing. Since the attacker has
access to the host memory, we must prevent leaking any pointers
from the randomized region into the non-randomized part of the
host memory. This is challenging, because usually JIT and static
code use the same stack during execution.

To cleanly isolate randomized JIT code from static code, we also
switch to a separate stack, which is hidden inside our randomized
region. In this way, the randomized stack can be used safely during
JIT execution and an adversary cannot recover a return pointer to
the JIT code from the native stack. In the following, we describe
how JITGuard securely handles the transition from static code to
JIT code execution, and JIT code to static code execution.

7.1 Static Code calls JIT Code

Static code calls JIT code functions when switching from interpreted
to optimized script code. This is depicted in Figure 7.

In Step () the static code initiates the switch to the JIT code
by calling a trampoline. Each trampoline targets a single JIT code
function.

If the pointers to the JIT-compiled functions were written as
constants directly in the trampoline code, an adversary could easily
disclose these pointers and compromise the randomized code region.
To prevent this, we set up a x86 segment at initialization time? so
that it starts at a random address. Hence, we only need to write an
offset into that segment to the trampoline. In Step (2) the trampoline
fetches the address of the function inside the randomized area
from a jump table in the randomized segment. Each trampoline
consists of a single jump instruction that retrieves the address using
a constant offset in the segment, e.g., jmp *%gs: (0x2a00). The

2While memory segmentation is not enforced in the 64 bit modes of the x86 processor,
segment registers can still be used to hold such base addresses. This is used on some
operating systems, e.g., to implement fast access to per-cpu data [35]. We leverage the
segmentation register gs, which is not used otherwise.



Static Code a JIT Code

fun: Return Trampoline jit_fun: @
ASM_INS ® IMP “(segReg + offset) SETUP_RET
RET : . SWITCH_STACK
...................................... H IMP fun
Native Stack JIT Stack

rsp + 0x00 : value
rsp + 0x08 : value
rsp + 0x10 : value

rsp + 0x00 : value
rsp + 0x08 : value
rsp + 0x10 : value

T ' ﬂJumpTabIe

Direct disclosure offset : fun return address

Figure 8: JITGuard mediates control-flow transfers from JIT code to static
code through return trampolines. These are set up by the JIT code before
jumping to the static function. This hides the return address to the JIT code
from the static code.

start address of the segment cannot be disclosed by the attacker.
The jump table is protected from the attacker because it is located
inside a randomized region.*

In Step (3) the JIT code switches from the native stack to the
randomized stack, and subsequently starts executing its code. In
particular, the randomization code updates rsp and rbp to their
new location inside the randomized area and saves their previous
values in the JIT stack. The JIT code expects a particular alignment
of the stack, so the randomization code needs to adjust the stack
to that alignment. When the JIT-compiled function returns, the
randomization code restores the old values for the registers so they
point to the normal stack again and returns execution to the static
code.

The compiler needs a way to prepare those trampolines. If the
trampolines were writable by the host code, the attacker could write
malicious code to the trampoline and execute it. Thus, JITGuard
leverages a double mapping of the trampolines (see also Figure 6),
and keeps the address of the writable mapping hidden inside its
SGX enclave, so the host code cannot read it.

7.2 JIT Code calls Static Code

During JIT code execution, it is possible to call functions inside the
static code. For instance, JIT code may call a library function that
is implemented in static code.

Usually, the return address of a function is stored on the stack. If
the JIT code calls the native code without taking special measures,
the native code can easily retrieve the return pointer from the stack
and disclose the location of the JITGuard-Region. To prevent this
attack, the native code uses return trampolines to return securely
to the JIT code. Using this scheme, the return address on the native
code stack actually represents the address of the return trampo-
line, which then retrieves the original return address using the
randomized segment (see Section 7.1).

Hence, the JIT code has to prepare the return trampoline prior to
calling the static code function in Step (1) of Figure 8. In particular,
3The base address of the segment can only be disclosed using a system call, arch_prct1,
or using a special instruction, rdgsbase. Our threat model prevents the adversary
from invoking that system call, since it is only used in the initialization code. The
instruction rdgsbase has to be explicitly activated by the operating system, which is
currently not even supported on Linux (and it is not used by Firefox).
“Theoretically, the native code could read the pointers in the randomized segment

using an instruction like mov *%gs: (0x2a00), %rax, but the gs segment register is
not used anywhere in the code of Firefox.

it will store the return address to the JIT code in a jump table, that
is protected because it is located inside the randomized segment.
Furthermore, it will switch the stack pointer to the native stack,
save the offset between the two stacks in the randomized segment,
and set the return address on the native stack to point to the return
trampoline.

In Step (2), the JIT code then issues the static code function call.
The static code then executes normally® until it returns. The return
trampoline in Step (3) then retrieves the original return address
using the segment register and an offset into the jump table. Finally,
it returns to the JIT code, which will restore the JIT stack using the
saved offset and continue execution at the instruction immediately
after the call to the static code.

8 SECURITY ANALYSIS

The goal of JITGuard is to mitigate code-injection, code-reuse, and
data-only attacks against the JIT code. As written in our threat
model (Section 4), protecting the static code, i.e., the browser and
the static part of the JIT compiler, is beyond the scope of this paper
and can be achieved leveraging existing defenses [1, 16, 33].

8.1 Code-injection/reuse Attacks

Both code injection and reuse techniques are used by the attacker
to execute arbitrary code after the control flow has been hijacked.
In particular, the attacker overwrites a code pointer with a mali-
cious pointer to injected code or the first gadget of a ROP payload.
However, this requires that the attacker knows the exact address
of the injected code or the gadget.

JITGuard does not prevent the attacker from injecting code us-
ing techniques like JIT spraying [6, 36]. However, we prevent the
attacker from disclosing the JITGuard-Region which contains the
JIT code and data. As a consequence, the attacker cannot hijack
any code pointers used by the JIT code, and cannot exploit the
generated JIT code for code-injection or code-reuse attacks.

Next, we analyze the resilience of JITGuard against information-
disclosure attacks.

8.2 Information-disclosure Attacks

The security of JITGuard is built on the assumption that the attacker
cannot leak the address of the JITGuard-Region. Therefore, we
carefully analyzed every component that communicates with the
JITGuard-Region and analyzed them. In particular, there are seven
components that interact with the randomized region, and hence,
could potentially leak the randomization secret: (1) the initialization
code, (2) the JIT compiler in the enclave, (3) the JIT code, (4) the
trampolines, (5) the transitions between JIT and static code, (6) the
garbage collector, or (7) system components. In the following we
explain how JITGuard prevents information-disclosure attacks for
each of these components.

SSome native functions require access to the most recent stack frames on the JIT stack.
We support this through copying the most important information of a small number
of recent stack frames from the JIT stack to the corresponding location on the native
code stack. The fields we copy do not contain pointers to the stack and we replace the
address return pointers with the corresponding trampolines. We do not copy these
frames back to the JIT stack, so the native code has no way to influence the JIT stack
(except legitimately returning a value to the caller).

69



(1) Initialization code. During the initialization the JITGuard-
Region is allocated through the mmap system call which returns
the memory address. Next, the address of the JITGuard-Region is
passed to the enclave, and we set all registers, local variables, and
the stack memory that is used for temporarily spilling register to
zero. This ensures that the address of the JITGuard-Region is not
stored in memory outside of the enclave.

(2) Enclave. The first action the initialization function of the
enclave takes is to obfuscate the address of the JITGuard-Region
by adding a random value. Henceforth, the JIT compiler will work
on the fake pointers. Note that those fake pointers are useless to
an attacker without the random offset, which is stored securely
inside the enclave. We identified 11 functions that require the actual
address of the JITGuard-Region, e.g., to allocate memory for the JIT
code stack, or to write the generated JIT code. We patch all of these
functions to convert the fake pointer back to the original address as
late as possible, e.g., in the very Ct+ statement that writes a jump
target to the JIT-compiled code page. Further, we ensure that the
original address is then not propagated in the data structures of the
JIT compiler. Since we add this translation to the code ourselves, and
it happens at the very last moment, we can verify that the address
to the JITGuard-Region is never leaked by those 11 functions. Due
to the large code base of the JIT compiler we cannot exclude the
possibility that other functions leak the address of the JITGuard-
Region to memory outside of the enclave. However, in this case
these functions would only leak the fake pointer which cannot be
de-obfuscated without possessing the randomization secret which
is stored securely within the enclave.

(3) JIT code. The JIT code does not leak any pointers to the
JITGuard-Region to attacker-accessible memory. To do this, it would
need to leak either the program counter or the stack pointer to the
heap. We carefully analyzed the JIT compiler and found no support
for such behavior.

Another way the attacker could force the JIT code to indirectly
leak an address that points into the JITGuard-Region is to generate
an exception while the JIT code is executing. This would cause the
operating system to store the current execution context (including
instruction and stack pointers, which would both point into the
JITGuard-Region) in a memory region readable by the attacker.
There are two main strategies the attacker could use to trigger an
interrupt: cause the JIT code to access invalid memory to trigger an
exception, or use a timer to trigger a delayed interrupt. However,
both strategies are infeasible. First, JavaScript is a memory-safe
language, and the JIT-compiled code cannot access invalid mem-
ory. Second, the execution of JavaScript is single-threaded, and
timer events are delivered synchronously, which means that the
JIT code first safely exists, before a timer event, e.g., triggered by
setTimeout (), is handled.

(4) Trampolines. Throughout the run time, the execution
switches between the native code and the JIT code. As explained
in the previous paragraph the JIT code cannot leak any addresses
of the JITGuard-Region. We use trampolines as an indirection to
prevent that any pointers to the JITGuard-Region are leaked to
memory that can be disclosed by the static code. The trampolines
adjust the stack pointer to point to the native or JIT stack, and

70

change the control flow. The trampolines use a segment register
as an indirection to access the JITGuard-Region to avoid leaking
any addresses during this transition. Specifically, the CPU resolves
the indirection using the segment register as a base address. The
segment base address is set in the kernel. This translation is trans-
parent to user mode, thus, the attacker cannot disclose the location
of the JITGuard-Region through the trampolines.

(5) [ T/static code transitions. To ensure the JIT code does not
leak any information when it calls a static function, we check any
arguments and the CPU registers to make sure they do not repre-
sent or contain pointers to the JITGuard-Region. We use similar
checks to verify the return value of JIT-compiled functions to static
functions.

(6) Garbage collector. Dynamic languages employ a garbage
collector for automatic memory management. This requires the
garbage collector to be aware of all memory that is used throughout
the execution. On the other hand, the garbage collector code out-
side the enclave cannot handle addresses in the JITGuard-Region.
We moved the code responsible for the garbage collection of sen-
sitive memory areas (JIT-compiled code, JIT stack) to the enclave,
where the actual addresses are available. As a consequence, the at-
tacker cannot leak addresses to the JITGuard-Region by disclosing
memory used by the garbage collector.

(7) System components. Linux’s proc filesystem [22] provides a
special file for each process that contains information about its
complete memory layout. If the attacker gains access to this file, the
attacker can disclose the address of randomized memory sections,
including the JITGuard-Region. However, this file is mainly used
for debugging purposes and on recent versions, access requires
higher privileges by default. Additionally, sandboxes, which are
used as an orthogonal defense mechanism to isolate JIT engines
from the rest of the system (see Section 4), prevent any access to
this file.

8.3 Data-only Attacks

During a data-only attack the attacker manipulates the data on
which the existing code operates. As we have shown in Section 3,
attacks like DOJITA are as powerful as code-injection attacks. JIT-
Guard mitigates data-only attacks like DOJITA by isolating the
code and data of the JIT compiler in an enclave, and isolating it
from the untrusted host process. Hence, the attacker can no longer
manipulate the intermediate representation of the JIT compiler to
launch DOJITA-like attacks. This also prevents attacks [57] that
target the temporary output buffer of the JIT compiler because this
buffer is within the enclave.

For this reason, the only remaining data-only attack vector on
the JIT compiler is its direct input, i.e., the unoptimized JavaScript
bytecode which should be compiled. However, this bytecode rep-
resentation is already used by the JIT engine during interpreter
execution. In Section 2.2 we explained that the interpreter limits the
capabilities of the interpreted bytecode for security reasons. This
is why the bytecode representation is designed in such a way, that
potentially harmful instructions cannot be encoded. For instance,
it does not support system call instructions, absolute addressing,
unaligned jumps, or direct stack manipulation. As a consequence,



35%
30%
25%
20%
15%
10%

[
5%

I
i
']

Aha T

-5%
e e IO e e e O o .© 3 N e 0 &C 3 @ 2 g e
o 0@‘0 & & 0@9 boé*(\‘;\?ﬁ. o0 ot o QX)\'\ &(’\Q ,\o/%?' . » K +Q%< 00@)\ R <& Q’§<\ & (5 o & &
R B S o 5 TG @ o8 @ (@7 @ (B @ o e o @
2 5;0\0 & &L 'a('& O Qg“ &\o\xy AV« (o ORI & ¢ (;6\0 & ¥ RN
S (o o Q°  .xO N & (& N o & & 2
,z,(,& e Q"’ \0\\.0 \0\’\,0 \0(\ © & 63& <(\’Z> %{(\ %\‘\0 0-\(\%
O A\ S
\0\
Static - JIT: Randomization Static - JIT: Trampolines All Trampolines & Randomization M JITGuard

Figure 9: JavaScript performance overhead for Sunspider 1.0.2 with the various components of JITGuard enabled.

an adversary cannot utilize the bytecode to force the JIT compiler
to create malicious native code, but has to resort to manipulating
the IR of the JIT compiler (which is mitigated by JITGuard).

The bytecode uses integer IDs to resolve call targets, which
cannot be exploited by themselves. The IDs are then resolved using
tables, which an adversary could theoretically compromise using
a data-only attack. However, this attack would also work in the
absence of any JIT compiler, and hence, it is not directly related to
JITGuard.

9 PERFORMANCE EVALUATION

We rigorously evaluated the performance impact of JITGuard on
SpiderMonkey using the JavaScript benchmark Sunspider 1.0.2 [56].

Sunspider is a well-known benchmark suite that focuses on
the core of the JavaScript language and is suggested by Mozilla
to measure the performance of SpiderMonkey [42]. The bench-
mark includes multiple real-world tasks that are used in modern
JavaScript apps, like dealing with JSON, code decompression, and
3D raytracing. We chose this benchmark since it only uses the core
functionality of JavaScript, but it does not depend on other parts
of the browser, like the DOM. Our implementation of JITGuard
only includes the core JavaScript engine. The tests from the Sun-
spider suite are also widely used in recent browser benchmarks:
as an example, the JetStream suite incorporates eleven tests from
Sunspider.

Sunspider strives to be statistically sound. The total score of Sun-
spider is the total time needed to perform each of the benchmarks.
We ran each benchmark ten times, and report the relative overhead
on the weighted average of the run times, which equals the relative
overhead on the total time.

We performed all evaluations on a computer with Ubuntu
14.04.4 LTS with the Linux kernel version 3.19.0.25. The machine
has an Intel Core i7-6700 processor clocked at 3.40 GHz and 32 GB
of RAM. We applied our modifications to SpiderMonkey version 47.
To ensure the reliability of the results, we disabled the dynamic
frequency scaling of the processor.

To fully understand the impact of each component of our design,
we measured the overhead of each of them independently, as well

as the overall impact of JITGuard. We summarize our results in
Figure 9.

Static Code — FIT Randomization. First, we evaluated the ran-
domization of the stack during the transition from static code to
JIT-compiled code (Static — JIT: Randomization in Figure 9; see
Section 6.1). This component has no measurable overhead, since
we only add a small constant overhead to each call to the JIT code.
bitops-nsieve-bits has the greatest overhead, 1.6%.

Static Code — JIT Trampolines. Second, we evaluated the impact
of the trampolines that are used for calls from the static code to
the JIT-compiled code (Static — JIT: Trampolines in Figure 9; see
Section 7). The average overhead of this component is around 1.0%,
since we only add one jump instruction compared to the unmodified
flow. Five benchmarks in groups access, bitops, and controlflow have
the highest overheads, ranging from 10% to 19%.

Upon investigation we found that their usage of the trampolines
is significantly higher than usual, up to 316 calls per microsec-
ond compared to the average of 83 calls per microsecond for all
benchmarks.

Both Trampolines and Randomization. We then measured the im-
pact of the trampolines and stack randomization that are employed
for calls from JIT-compiled code to static code, in addition to the pre-
vious components (All Trampolines & Randomization in Figure 9).
We measured these components together as the implementation
depends on the previous components for performance reasons. The
average overhead in this case is 9.2%. access-fannkuch and bitops-
nsieve-bits have the highest overhead, exceeding 19%, due to their
high overheads in the previous test (18%). bitops-bitwise-and and
math-cordic have the highest additional overhead w.r.t. the previous
tests, moving from below 2% to 12.9% and 15.7% respectively. This
additional overhead is due to their high frequency of calls from the
JIT code to the static code, 579 and 594 times per millisecond re-
spectively, compared to the average of 196 times per millisecond for
all benchmarks. This overhead is due to the imbalance between call
instructions and ret instructions, which thrashes the processor’s re-
turn stack. This is necessary to implement our security guarantees.

71



The additional overhead of other benchmarks is correlated with
the frequency of these transitions as well.

Full JITGuard. We then measured the impact of the full JITGuard
(Full ITGuard in Figure 9, where the error bars refer to the 95%
confidence interval on the values). The average overhead for the
complete scheme, including trampolines, stack randomization, and
SGX compiler, is 9.8%, implying that the overhead due to SGX
communication and SGX mode switches is well below 1%. This
overhead specifically related to SGX is due to the low number of
calls to the SGX compiler. In average, the SGX compiler is called
only 6 times for each benchmark, while the maximum number of
calls is 23. The maximum overhead in this benchmark is math-
spectral-norm, which exceeds 32%. However, the overhead is still
just 4.8 ms in this case; the higher relative overhead is due to the
very fast run time of this benchmark, 14.6 ms compared to the
average of 230 ms.

Finally, we compared our results to another run of the bench-
mark, with all JIT compilers disabled (interpreter only). JIT allows
the benchmark to run more than 13 times faster on average and up
to 260 times faster for some benchmarks. This confirms that JIT-
compiled code is one order of magnitude faster than the interpreter,
even including our overhead of 9.8%.

10 DISCUSSION

Portability of JITGuard. Applying JITGuard to a JIT engine re-
quires manual effort. However, we argue this one-time effort scales
due to the similarity in the high-level design of major JIT en-
gines and their limited number. In fact, other mitigations, like
CFI [31, 39, 58], require individual effort for each JIT engine as
well.

Choice of different JavaScript Engines. The attentive reader may
have noticed that our attack was implemented for Edge’s JIT engine
while our defense hardens Firefox’s JIT engine. This is due to the
fact that we started both projects independently from each other.
However, the general idea of both the attack and the defense lever-
age design features which are common to all major JIT engines and
are, thus, general.

Effectiveness of memory hiding. A number of recent works [20,
23] have questioned the effectiveness of memory hiding to pro-
tect sensitive memory areas that are not referenced elsewhere in
memory. Gawlik et al. [23] specifically consider a web browser
and introduce crash-resistant programming. However, one of the
countermeasures they mention, guard pages, can be successfully
applied to JITGuard since it only has one randomized region that
needs to be protected. Gawlik et al. exploit signal handlers as an
oracle in order to disclose whether a specific page is mapped. The
code of those handlers can be augmented so that it calls a specific
entry point on the enclave every time such an exception happens.
If the address where the signal happened is close to or inside the
JITGuard-Region, the enclave will then immediately terminate the
program before the address can be exploited by the malicious code.

Alternative Techniques. To isolate the JIT compiler one could use
randomized segments protected through segment registers, or a

72

separate process. Using the randomized segments to hide the com-
piler, its stack, and its heap would be possible, but would require a
considerable effort to make sure that no information leak is possible.
On the other hand, SGX provides a clean separation.

Existing browsers can be retrofitted with an SGX-based design,
since it preserves the synchronous call semantics of existing code.
Using a separate process for the compiler, instead, requires a sub-
stantial redesign to support the asynchronous communication used
in IPC.® Using separate processes also means the processes would
have different address spaces and, thus, a higher overhead would
be required due to additional communication and synchronization.
Moreover, a remote procedure call from the browser to the separate
compiler process would incur additional latency if that process is
not already running on another core, which is unlikely, especially
in case of elevated system load. On the other hand, the SGX enclave
is executed on the same core, so it does not require any action from
the system scheduler to run. The enclave can also leverage the data
already stored in the CPU caches. In our evaluation, the overhead
due to SGX is well below 1%. Finally, the remote attestation capabil-
ities of SGX can be leveraged to prove to the server that the browser
is using the JITGuard compiler and that it was not tampered with.

11 CONCLUSION

Protection of modern software against run-time attacks (code in-
jection and code reuse) has been a subject of intense research and
a number of solutions have been deployed or proposed. Moreover,
recently, researchers demonstrated the threat of the so-called data-
only attacks that manipulate data flows instead of the control flow
of the code. These attacks seem to be very hard to prevent because
any defense mechanism requires the exact knowledge of the input
data and the intended data flow. However, on the one hand, most
of the proposed defenses are tailored towards statically generated
code and their adaption to dynamic code comes with the price of
security or performance penalties. On the other hand, many wide-
spread applications, like browsers and document viewers, embed
just-in-time compilers to generate dynamic code.

We present a generic data-only attack, dubbed DOJITA, against
JIT compilers that can successfully execute malicious code even in
the presence of defenses against control-flow hijacking attacks such
as control-flow integrity (CFI) or randomization-based defenses. We
then propose JITGuard, a novel defense to mitigate code-injection,
code-reuse, and data-only attacks against just-in-time compilers
(including DOJITA). For this we utilize Intel’s Software Guard Ex-
tensions (SGX), and explain the challenges that we needed to tackle.
As proof-of-concept we implemented and evaluated JITGuard for
Firefox’s JIT compiler SpiderMonkey. The average overhead for the
complete scheme, including trampolines, stack randomization, and
SGX compiler, is 9.8%, where the overhead due to SGX communi-
cation and mode switches is below 1%. While we are working on
further performance optimizations, our prototype already demon-
strates practicality of JITGuard.

© Recent versions of Chakra have been redesigned [40] around an out-of-process
compiler. Their defense required 27 000 additional lines of code, compared to 640 000
lines of C/C++ code in the Chakra source.



ACKNOWLEDGMENTS

This work was supported in part by the German Science Foundation
(project S2, CRC 1119 CROSSING), the European Union’s Seventh
Framework Programme (609611, PRACTICE), and the German Fed-
eral Ministry of Education and Research within CRISP.

REFERENCES

(1]

[2]
(3]

[11]
[12]

[13]

[15

[16

[17

[18]

[19]

[20]

[21]

Martin Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. 2005. Control-flow
integrity. In ACM SIGSAC Conference on Computer and Communications Security
(CCS).

Aleph One. 2000. Smashing the Stack for Fun and Profit. Phrack Magazine 49
(2000).

Jason Ansel, Petr Marchenko, Ulfar Erlingsson, Elijah Taylor, Brad Chen, Derek L.
Schuff, David Sehr, Cliff Biffle, and Bennet Yee. 2011. Language-independent sand-
boxing of just-in-time compilation and self-modifying code. In 32nd ACM SIG-
PLAN Conference on Programming Language Design and Implementation (PLDI).
Michalis Athanasakis, Elias Athanasopoulos, Michalis Polychronakis, Georgios
Portokalidis, and Sotiris Ioannidis. 2015. The Devil is in the Constants: Bypassing
Defenses in Browser JIT Engines. In 22nd Annual Network and Distributed System
Security Symposium (NDSS).

Michael Backes, Thorsten Holz, Benjamin Kollenda, Philipp Koppe, Stefan Niirn-
berger, and Jannik Pewny. 2014. You Can Run but You Can’t Read: Preventing
Disclosure Exploits in Executable Code. In ACM SIGSAC Conference on Computer
and Communications Security (CCS).

Dion Blazakis. 2010. Interpreter exploitation: Pointer inference and JIT spraying.
In Blackhat DC (BH DC).

Kjell Braden, Stephen Crane, Lucas Davi, Michael Franz, Per Larsen, Christopher
Liebchen, and Ahmad-Reza Sadeghi. 2016. Leakage-Resilient Layout Randomiza-
tion for Mobile Devices. In 23rd Annual Network and Distributed System Security
Symposium (NDSS).

Nicolas Carlini, Antonio Barresi, Mathias Payer, David Wagner, and Thomas R.
Gross. 2015. Control-Flow Bending: On the Effectiveness of Control-Flow In-
tegrity. In 24th USENIX Security Symposium (USENIX Sec).

Nicholas Carlini and David Wagner. 2014. ROP is Still Dangerous: Breaking
Modern Defenses. In 23rd USENIX Security Symposium (USENIX Sec).

Miguel Castro, Manuel Costa, and Tim Harris. 2006. Securing Software by
Enforcing Data-flow Integrity. In 7th USENIX Symposium on Operating Systems
Design and Implementation (OSDI).

Ping Chen, Yi Fang, Bing Mao, and Li Xie. 2011. JITDefender: A Defense against
JIT Spraying Attacks. In 26th International Information Security Conference (IFIP).
P. Chen, R. Wu, and B. Mao. 2013. JITSafe: a framework against Just-in-time
spraying attacks. IET Information Security 7, 4 (2013).

Shuo Chen, Jun Xu, Emre Can Sezer, Prachi Gauriar, and Ravishankar K Iyer.
2005. Non-Control-Data Attacks Are Realistic Threats.. In 14th USENIX Security
Symposium (USENIX Sec).

Mauro Conti, Stephen Crane, Lucas Davi, Michael Franz, Per Larsen, Christopher
Liebchen, Marco Negro, Mohaned Qunaibit, and Ahmad-Reza Sadeghi. 2015.
Losing Control: On the Effectiveness of Control-Flow Integrity under Stack
Attacks. In ACM SIGSAC Conference on Computer and Communications Security
(CCS).

Jonathan Corbet. 2012. Yet another new approach to seccomp. https://lwn.net/
Articles/475043/. (2012).

Stephen Crane, Christopher Liebchen, Andrei Homescu, Lucas Davi, Per Larsen,
Ahmad-Reza Sadeghi, Stefan Brunthaler, and Michael Franz. 2015. Readactor:
Practical Code Randomization Resilient to Memory Disclosure. In 36th IEEE
Symposium on Security and Privacy (S&P).

Stephen Crane, Stijn Volckaert, Felix Schuster, Christopher Liebchen, Per Larsen,
Lucas Davi, Ahmad-Reza Sadeghi, Thorsten Holz, Bjorn De Sutter, and Michael
Franz. 2015. It’s a TRaP: Table Randomization and Protection against Function-
Reuse Attacks. In ACM SIGSAC Conference on Computer and Communications
Security (CCS).

Lucas Davi, Christopher Liebchen, Ahmad-Reza Sadeghi, Kevin Z. Snow, and
Fabian Monrose. 2015. Isomeron: Code Randomization Resilient to (Just-In-Time)
Return-Oriented Programming. In 22nd Annual Network and Distributed System
Security Symposium (NDSS).

Lucas Davi, Ahmad-Reza Sadeghi, Daniel Lehmann, and Fabian Monrose. 2014.
Stitching the Gadgets: On the Ineffectiveness of Coarse-Grained Control-Flow
Integrity Protection. In 23rd USENIX Security Symposium (USENIX Sec).

Isaac Evans, Samuel Fingeret, Julian Gonzalez, Ulziibayar Otgonbaatar, Tiffany
Tang, Howard Shrobe, Stelios Sidiroglou-Douskos, Martin Rinard, and Hamed
Okhravi. 2015. Missing the Point(er): On the Effectiveness of Code Pointer
Integrity. In 36th IEEE Symposium on Security and Privacy (S&P).

Isaac Evans, Fan Long, Ulziibayar Otgonbaatar, Howeard Shrobe, Martin Rinard,
Hamed Okhravi, and Stelios Sidiroglou-Douskos. 2015. Control Jujutsu: On the
Weaknesses of Fine-Grained Control Flow Integrity. In ACM SIGSAC Conference

[23]

[24]

[25

[26]

[27]

[28]

[29]

[30]

[31]

[32

[33]

[34]

[35]

[36]

[37

[38
[39

[40]

[41

[42

[43]

[44

[45

[46

[47]

[48

=
2,.%

on Computer and Communications Security (CCS).

Roger Faulkner and Ron Gomes. 1991. The Process File System and Process
Model in UNIX System V.. In USENIX Technical Conference (ATC).

Robert Gawlik, Benjamin Kollenda, Philipp Koppe, Behrad Garmany, and
Thorsten Holz. 2016. Enabling client-side crash-resistance to overcome diversifi-
cation and information hiding. In 23rd Annual Network and Distributed System
Security Symposium (NDSS).

Jason Gionta, William Enck, and Peng Ning. 2015. HideM: Protecting the Con-
tents of Userspace Memory in the Face of Disclosure Vulnerabilities. In 5th ACM
Conference on Data and Application Security and Privacy (CODASPY).

Enes Goktas, Elias Athanasopoulos, Herbert Bos, and Georgios Portokalidis. 2014.
Out of Control: Overcoming Control-Flow Integrity. In 35th IEEE Symposium on
Security and Privacy (S&P).

Enes Goktas, Elias Athanasopoulos, Michalis Polychronakis, Herbert Bos, and
Georgios Portokalidis. 2014. Size Does Matter: Why Using Gadget-Chain Length
to Prevent Code-Reuse Attacks is Hard. In 23rd USENIX Security Symposium
(USENIX Sec).

Ian Goldberg, David Wagner, Randi Thomas, and Eric A. Brewer. 1996. A Se-
cure Environment for Untrusted Helper Applications. In 6th USENIX Security
Symposium (USENIX Sec).

Guang Gong. 2016. Pwn a Nexus Device With a Single Vulnerability. https:
//cansecwest.com/slides/2016/CSW2016_Gong_Pwn_a_Nexus_device_with_a_
single_vulnerability.pdf. (2016).

Andrei Homescu, Stefan Brunthaler, Per Larsen, and Michael Franz. 2013. Li-
brando: transparent code randomization for just-in-time compilers. In ACM
SIGSAC Conference on Computer and Communications Security (CCS).

Hong Hu, Shweta Shinde, Adrian Sendroiu, Zheng Leong Chua, Prateek Saxena,
and Zhenkai Liang. 2016. Data-Oriented Programming: On the Expressiveness
of Non-Control Data Attacks. In 37th IEEE Symposium on Security and Privacy
(S&P).

Intel. 2016. Control-flow Enforcement Technology Preview. https://software.
intel.com/sites/ default/files/managed/4d/2a/ control - flow - enforcement -
technology-preview.pdf. (2016).

Intel. 2016. Intel Software Guard Extensions (Intel SGX). https://software.intel.
com/en-us/sgx. (2016).

Volodymyr Kuznetsov, Laszlo Szekeres, Mathias Payer, George Candea, R. Sekar,
and Dawn Song. 2014. Code-Pointer Integrity. In 11th USENIX Symposium on
Operating Systems Design and Implementation (OSDI).

Per Larsen, Andrei Homescu, Stefan Brunthaler, and Michael Franz. 2014. SoK:
Automated Software Diversity. In 35th IEEE Symposium on Security and Privacy
(S&P).

Linux Foundation. 2014. This-CPU Operations. http://Ixr.free-electrons.com/
source/Documentation/this_cpu_ops.txt. (2014).

Giorgi Maisuradze, Michael Backes, and Christian Rossow. 2016. What Cannot
Be Read, Cannot Be Leveraged? Revisiting Assumptions of JIT-ROP Defenses. In
25th USENIX Security Symposium (USENIX Sec).

Microsoft. 2006. Data Execution Prevention (DEP). http://support.microsoft.
com/kb/875352/EN-US/. (2006).

Microsoft. 2015. ChakraCore. https://github.com/Microsoft/ChakraCore. (2015).
Microsoft. 2015.  Control Flow Guard.  http://msdn.microsoft.com/en-
us/library/Dn919635.aspx. (2015).

Matt Miller. 2017. Mitigating arbitrary native code execution in Microsoft Edge.
https://blogs.windows.com/msedgedev/2017/02/23/mitigating-arbitrary-native-
code-execution/. (2017).

Mozilla. 2015. W xor X JIT-code enabled in Firefox. https://jandemooij.nl/blog/
2015/12/29/wx-jit-code-enabled-in-firefox. (2015).

Mozilla. 2016. JavaScript:New to SpiderMonkey. https://wiki.mozilla.org/

JavaScript:New_to_SpiderMonkey#Benchmark_your_changes. (2016).

Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve Zdancewic.
2009. SoftBound: Highly Compatible and Complete Spatial Memory Safety for
C. In 30th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI).

Santosh Nagarakatte, Jianzhou Zhao, Milo MK Martin, and Steve Zdancewic.
2010. CETS: compiler enforced temporal safety for C. In International Symposium
on Memory Management (ISMM).

Nergal. 2001. The advanced return-into-lib(c) exploits: PaX case study. Phrack
Magazine 11 (2001).

Ben Niu and Gang Tan. 2014. Modular Control-flow Integrity. In 35th ACM SIG-
PLAN Conference on Programming Language Design and Implementation (PLDI).
Ben Niu and Gang Tan. 2014. Rock]JIT: Securing Just-In-Time Compilation Using
Modular Control-Flow Integrity. In ACM SIGSAC Conference on Computer and
Communications Security (CCS).

PaX. 2003. PaX Address Space Layout Randomization. (2003).

Felix Schuster, Thomas Tendyck, Christopher Liebchen, Lucas Davi, Ahmad-Reza
Sadeghi, and Thorsten Holz. 2015. Counterfeit Object-oriented Programming:
On the Difficulty of Preventing Code Reuse Attacks in C++ Applications. In 36th
IEEE Symposium on Security and Privacy (S&P).

73



(53]

[54]

A

Fermin J. Serna. 2012. The Info Leak Era on Software Exploitation. In Blackhat
USA (BH US).

Hovav Shacham. 2007. The geometry of innocent flesh on the bone: return-into-
libc without function calls (on the x86). In ACM SIGSAC Conference on Computer
and Communications Security (CCS).

Kevin Z. Snow, Fabian Monrose, Lucas Davi, Alexandra Dmitrienko, Christopher
Liebchen, and Ahmad-Reza Sadeghi. 2013. Just-In-Time Code Reuse: On the
Effectiveness of Fine-Grained Address Space Layout Randomization. In 34th IEEE
Symposium on Security and Privacy (S&P).

K. Z. Snow, R. Rogowski, J. Werner, H. Koo, F. Monrose, and M. Polychronakis.
2016. Return to the Zombie Gadgets: Undermining Destructive Code Reads via
Code Inference Attacks. In 37th IEEE Symposium on Security and Privacy (S&P).
Chengyu Song, Chao Zhang, Tielei Wang, Wenke Lee, and David Melski. 2015.
Exploiting and Protecting Dynamic Code Generation. In 22nd Annual Network
and Distributed System Security Symposium (NDSS).

Adrian Tang, Simha Sethumadhavan, and Salvatore Stolfo. 2015. Heisenbyte:
Thwarting Memory Disclosure Attacks using Destructive Code Reads. In ACM
SIGSAC Conference on Computer and Communications Security (CCS).

The WebKit team. 2013. SunSpider 1.0.2. https://www.webkit.org/perf/sunspider/
sunspider.html. (2013).

Theori. 2016. Chakra JIT CFG Bypass. http://theori.io/research/chakra-jit-cfg-
bypass. (2016).

Caroline Tice, Tom Roeder, Peter Collingbourne, Stephen Checkoway, Ulfar
Erlingsson, Luis Lozano, and Geoff Pike. 2014. Enforcing Forward-Edge Control-
Flow Integrity in GCC & LLVM. In 23rd USENIX Security Symposium (USENIX
Sec).

Jan Werner, George Baltas, Rob Dallara, Nathan Otterness, Kevin Z. Snow, Fabian
Monrose, and Michalis Polychronakis. 2016. No-Execute-After-Read: Preventing
Code Disclosure in Commodity Software. In 11th ACM Symposium on Information,
Computer and Communications Security (ASIACCS).

EXAMPLE PAYLOAD

The text of an example payload to the framework described in Sec-
tion 3 follows. Specifically, this payload creates a file and writes
arbitrary content to it. This payload is parsed by our attack frame-
work, which then creates one or more malicious IR objects for each
statement. The JIT compiler then generates native code correspond-
ing to the payload.

74

\

var payload = °;
push rbp
mov rbp, rsp
sub rsp, 0x500

; Resolve function addresses

; LoadLibraryEx(kernel32.dll, 0,0)
xor r8, r8

xor rdx, rdx

mov rcx, #addr_buf_kernel32dll
call #addr_LoadLibraryExA

mov [#addr_handle_kernel32], rax

; GetProcAddr (hKernel, CreateFile)
mov rcx, rax

mov rdx, #addr_buf_CreateFileA
call #addr_GetProcAddr

mov [#addr_ptr_CreateFileA], rax
mov rcx, rax

)

; GetProcAddr (hKernel, WriteFile)
mov rcx, [#addr_handle_kernel32]
mov rdx, #addr_buf_WriteFile
call #addr_GetProcAddr
mov [#addr_ptr_WriteFilel, rax
; GetProcAddr (hKernel, GetTempPath)
mov rcx, [#addr_handle_kernel32]
mov rdx, #addr_buf_GetTempPath
call #addr_GetProcAddr
mov [#addr_ptr_GetTempPath], rax
; GetProcAddr (hKernel, CLoseHandle)
mov rcx, [#addr_handle_kernel32]
mov rdx, #addr_buf_CloseHandle
call #addr_GetProcAddr
mov [#addr_ptr_CloseHandle], rax
; GetProcAddr (hKernel, ExitThread)
mov rcx, [#addr_handle_kernel32]
mov rdx, #addr_buf_ExitThread
call #addr_GetProcAddr
mov [#addr_ptr_ExitThread], rax
; GetTempPath ()
mov rcx, 0x400
mov rdx, #addr_buf_1024
call [#addr_ptr_GetTempPath]
; strcat(tmppath, filename)
mov rsi, #addr_buf_file_name
mov rdi, #addr_buf_1024
add rdi, rax
XOr rcx, rcx
L_strcat:

Xor rax, rax

mov al, [rsil

mov [rdi], rax

add rcx, 0x1

add rsi, ox1



add rdi, ox1
cmp rcx, #len_file_name
jne L_strcat
; CreateFile ()
mov rax, rsp
add rax, 0x20
mov [rax], 0x2
add rax, 0x8
mov [rax], 0x80
add rax, 0x8
mov [rax], 0x0
xor r9, r9
xor r8, r8
mov rdx, 0x40000000
mov rcx, #addr_buf_1024
call [#addr_ptr_CreateFileAl]
mov [#addr_handle_filel], rax
; WriteFile ()
mov rax, rsp
add rax, 0x20
mov [rax], 0x0
mov r9, #addr_buf_nbw
mov r8, #len_file_content
mov rdx, #addr_buf_file_content
mov rcx, [#addr_handle_file]
call [#addr_ptr_WriteFile]
; CloseHandle ()
mov rcx, [#addr_handle_file]
call [#addr_ptr_CloseHandle]
XOor rcx, rcx
call [#addr_ptr_ExitThread]

SN
y

var args = {

"#addr_LoadLibraryExA"
LoadLibraryEx . hex (),
"#addr_GetProcAddr"
GetProcAddr.hex (),
"#addr_buf_kernel32dll" :
addr_buf_kernel32dll.hex (),
"#addr_handle_kernel32" :

addr_handle_kernel32 .hex (),
"#addr_buf_CreateFileA" :

addr_buf_CreateFileA .hex (),
"#addr_ptr_CreateFileA" :
addr_ptr_CreateFileA . hex (),
"#addr_buf_WriteFile" :
addr_buf_WriteFile.hex (),
"#addr_ptr_WriteFile" :
addr_ptr_WriteFile .hex (),
"#addr_buf_CloseHandle"
addr_buf_CloseHandle .hex () ,
"#addr_ptr_CloseHandle"
addr_ptr_CloseHandle . hex () ,
"#addr_buf_GetTempPath"
addr_buf_GetTempPath.hex (),
"#addr_ptr_GetTempPath"
addr_ptr_GetTempPath.hex (),
"#addr_buf_ExitThread"
addr_buf_ExitThread . hex()
"#addr_ptr_ExitThread" :
addr_ptr_ExitThread. hex()
"#addr_buf_1024"
addr_buf_1024. hex(),
"#addr_buf_file_name'
addr_buf_ ﬁle name . hex()

"#len_file_name' : u64 (0,

file_name .length + 1). hex(),
"#addr_handle_file" :

addr_handle_file .hex (),
"#addr_buf_nbw" :

addr_buf_nbw .hex (),

"#len_file_content" : u64 (0,

file_content.length).hex (),
"#addr_buf_file_content"
addr_buf_file_content.hex (),

75






VoiceGuard: Secure and Private Speech Processing

Ferdinand Brasser', Tommaso Frassetto', Korbinian Riedhammer?, Ahmad-Reza Sadeghi,
Thomas Schneider, Christian Weinert*

ITechnische Universitit Darmstadt, Germany
2University of Applied Sciences Rosenheim, Germany

{ferdinand.brasser, tommaso.frassetto, ahmad.sadeghi}@trust.tufdarmstadt.de,
korbinian@ieee.org, thomas.schneider@cs.tu-darmstadt.de, christian.weinert@crisp-da.de

Abstract

With the advent of smart-home devices providing voice-based
interfaces, such as Amazon Alexa or Apple Siri, voice data is
constantly transferred to cloud services for automated speech
recognition or speaker verification.

While this development enables intriguing new applications,
it also poses significant risks: Voice data is highly sensitive since
it contains biometric information of the speaker as well as the
spoken words. This data may be abused if not protected properly,
thus the security and privacy of billions of end-users is at stake.

We tackle this challenge by proposing an architecture,
dubbed VoiceGuard, that efficiently protects the speech pro-
cessing task inside a trusted execution environment (TEE). Our
solution preserves the privacy of users while at the same time it
does not require the service provider to reveal model parameters.
Our architecture can be extended to enable user-specific models,
such as feature transformations (including fMLLR), i-vectors,
or model transformations (e.g., custom output layers). It also
generalizes to secure on-premise solutions, allowing vendors to
securely ship their models to customers.

We provide a proof-of-concept implementation and evaluate
it on the Resource Management and WSJ speech recognition
tasks isolated with Intel SGX, a widely available TEE implemen-
tation, demonstrating even real time processing capabilities.
Index Terms: speech recognition, privacy protection, cloud
computing

1. Introduction

Devices providing voice-based interfaces are omnipresent in
today’s world. Amazon Alexa, Apple Siri, Google Assistant,
or Microsoft Cortana are available to the more than two billion
smartphone users in 2018. Also, there is a steadily increasing
number of smart-home devices, like Amazon Echo, Apple Home-
Pod, or Google Home, solely relying on voice-based interaction.
Possible application scenarios are not restricted to the consumer
market but increasingly cover professional activities, for example
enterprise-ready smart assistants guiding through complicated
business processes in order to increase productivity.

In any of the aforementioned cases, voice data is constantly
transferred to the cloud for remote speech processing, such as au-
tomated speech recognition (ASR) or speaker verification. This
poses significant security and privacy risks since voice data con-
tains sensitive biometric information as well as the spoken words:
in case unprotected voice data gets out of hand, it may be abused,
e.g., for impersonation attacks, assembling fake recordings, or
simply extracting intimate as well as secret and sensitive content.

A naive solution to these problems is to ship the speech
processing code together with corresponding models to the users
to run locally. While this might be infeasible for low-end devices

anyhow, it also contradicts the business interests of vendors pro-
viding such models which represent their intellectual property.

Attempts based on purely cryptographic solutions, i.e., ho-
momorphic encryption (HE) or secure multi-party computation
(SMPC), guarantee that neither user nor vendor need to reveal
their respective inputs in the clear. However, as we elaborate in
our review of related work in §2, these solutions are highly im-
practical due to their massive overhead in computation time and
communication costs. Besides, none of the existing solutions
considered user-specific models, i.e., the common practice to
train or adapt a separate model for each user that covers devia-
tions from the model to incorporate specific characteristics, e.g.,
in dialect and pronunciation.

Goals and Contributions. To overcome these limitations,
we propose VoiceGuard in §5, an architecture that efficiently
protects speech processing tasks using a trusted execution envi-
ronment (TEE). It allows the secure processing of confidential
data even in a hostile environment by combining cryptographic
techniques with hardware-enforced code and data isolation.

Although the concept of TEEs has been known for many
years, they only recently became widely available with Intel’s in-
troduction of Software Guard Extensions (SGX). SGX is Intel’s
implementation of a TEE available in most of their recent CPUs.
It generated large interest in both academic research and indus-
try: Signal, for example, a popular instant messaging service
similar to WhatsApp, employs Intel SGX to identify the contacts
in a new user’s address book that are signed up to the service
while all other contacts remain private [1]. The deployment of
such privacy-preserving services is also facilitated by leading
cloud service providers (e.g., Microsoft Azure [2]) making this
CPU feature available to customers.

VoiceGuard enables secure and private speech processing,
independent of who actually controls the machine performing
the computation. Thus, it could be hosted by the vendor of the
speech processing software, a third party service provider, or
even the user. The latter on-premise solution could be preferred
if it is necessary to comply to certain legal regulations or the user
wants to exclude the possibility of a malicious party performing
sophisticated hardware attacks.

The architecture of VoiceGuard can easily be extended to
enable user-specific models, such as feature transformations (in-
cluding fMLLR), i-vectors, or model transformations (e.g., cus-
tom output layers). We present a fully functional prototype imple-
mentation of VoiceGuard for ASR based on the kaldi toolkit [3].
Moreover, we conduct an empirical performance evaluation of
the Resource Management and WSJ speech recognition tasks
in §6, thereby demonstrating that the overhead induced by our
protection measures is low enough to enable privacy-preserving
speech recognition in real time.

77



2. Related Work

In the following, we briefly review general approaches for
privacy-preserving machine learning (grouped by the underlying
technology) that could be adapted to speech processing tasks
which depend on the evaluation of neural networks. Furthermore,
we review specialized approaches for various privacy-preserving
speech processing tasks.

2.1. Privacy-Preserving Machine Learning

Secure Multi-Party Computation (SMPC). SMPC en-
ables two or more parties to jointly compute a publicly known
function without revealing private inputs to each other by exe-
cuting an interactive cryptographic protocol. Recently, SMPC
protocols and frameworks have been applied to both privacy-
preserving training of neural networks [4] and corresponding in-
ference [5, 6, 7, 8, 9], mostly for image classification tasks. How-
ever, compared to unprotected data processing, SMPC-based so-
lutions require several orders of magnitude higher computation
time and communication cost. They are especially impractical
for on-the-fly processing due to repeated initialization costs.

Homomorphic Encryption (HE). HE allows performing
operations on encrypted data s.t. the decryption of the com-
putation result equals the outcome when performing the same
operations on plaintext data. Microsoft CryptoNets [10] was
the first attempt to utilize HE for secure evaluation of neural
networks, followed by an improvement named CryptoDL [11],
which replaces complex activation functions with approximated
low-degree polynomials. Nevertheless, the reported performance
results indicate that solutions based on heavyweight HE are cur-
rently far from suitable for speech recognition in real time.

TEE. SMPC via TEEs has been proposed in [12, 13, 14].
Ohrimenko et al. [15] adapt several machine learning algorithms,
including neural networks, to prevent cache-based side-channel
attacks in scenarios where multiple institutions use Intel SGX
to securely share their datasets for training and evaluation of
joint machine learning models. In [16], the authors introduce a
similar protection mechanism that is efficient enough for real-
time data processing: instead of preventing memory accesses
that depend on sensitive data, they add noise to memory traces
by accessing dummy data. The very recent Chiron [17] system
allows a user to train a model using the computing resources of
a cloud service provider while the training data remains hidden
and the resulting model can only be accessed as a black box. This
machine learning as-a-service (MLaaS) concept differs from our
scenario where we assume vendors who provide existing models
which should only be evaluated obliviously.

2.2. Privacy-Preserving Speech Processing

Pathak et al. [18] explored how to use the previously mentioned
SC and HE techniques for privacy-preserving versions of speech
processing tasks such as speech recognition and speaker verifi-
cation. However, with their prototype implementation based on
the Paillier HE scheme, it takes more than 3 hours to encrypt
1s of audio and to recognize a single word out of a 10 word
vocabulary. Admitting the impracticality of this approach, the
authors furthermore propose a very efficient solution based on
secure string-matching. Unfortunately, this approach can only
be used for certain tasks such as speaker verification.

Recently, Glackin et al. [19] proposed an architecture for
finding outsourced (encrypted) speech documents that contain
given keywords. The architecture works as follows: (I) the
client translates audio to phonetic symbols using a CNN-based

78

acoustic model, (IT) the encrypted phones and a search index are
sent to a server, and (III) the server uses a searchable encryption
scheme to deliver outsourced data matching the given keywords.
However, this approach requires the vendor to hand the acoustic
model to the user in the clear.

3. Background

For the remainder of the paper, we assume familiarity with
state-of-the-art speech processing pipelines and restrict the back-
ground to the introduction of Intel SGX.

Intel SGX. Intel Software Guard Extensions (SGX) enables
processing of confidential data on untrusted systems [20, 21,
22, 23]. SGX introduces the concept of enclaves, which are
programs executed in isolation from all other software on a
system, including privileged software, like the operating system
(OS) or a hypervisor.

Enclaves are loaded as part of a host process and are embed-
ded in its virtual memory, like a library. The initial content of
an enclave is loaded from unprotected memory, hence, it can be
manipulated and is not kept confidential. Therefore, confidential
data must be provisioned to an enclave over a secure channel
after it has been created. However, to ensure that secret data is
not sent to a malicious (or maliciously modified) enclave, the in-
tegrity and authenticity of an enclave needs to be verified before
provisioning secret data. To enable this, SGX provides a security
service called remote attestation (RA). With RA, an external
party can verify whether an enclave was created correctly, i.e., a
cryptographic hash of the initial memory state of an enclave is
signed by the platform signing key which is built into the CPU.

Once available inside an enclave, secret data can be en-
crypted using an enclave-specific key and written to untrusted
storage, e.g., the hard disk. This sealing mechanism allows an
enclave to use secret data across multiple instantiations.

4. Model and Assumptions

In this paper we consider a setting where three parties collaborate
to perform secure and private speech processing:

(1) The user provides the voice data to be processed. She is
concerned about her privacy and does not want the other parties
to identify her based on biometric characteristics in her input.
Additionally, the user does not want to reveal the content of her
input to the other parties, i.e., they should not be able to access
the voice data or the processing results. Lastly, the user does not
want to be traceable across multiple sessions.

(2) The vendor provides the software required for speech
processing together with corresponding models. This data con-
stitutes the vendor’s intellectual property, hence it must be kept
confidential from the other parties.

(3) The service provider carries out the actual computations
based on the user’s and the vendor’s inputs. The service provider
could be an independent third party, e.g., a cloud service provider.
Without loss of generality, the service provider could also be
under the control of the user or the vendor.

Adversary Model. The adversary’s goal is to extract sensi-
tive information, i.e., the intellectual property of the vendor, the
input of the user, or data that allows the adversary to identify or
track the user.

We assume that the adversary is in control of the service
provider’s infrastructure, in particular, all computer systems
involved in performing the speech processing task. The adver-
sary has full control over the software in the service provider’s
infrastructure, including privileged software like the OS or a



User U Service Provider P Vendor V

8
§ ®
I -
il provision
2 .
g Ky @) code vetting -
= AM
c 3 create ( ¢ ]
o
E LM
S (@) attest (M, PK) &X' (2) attest o(M, PK)
c A — — L/ aue g
= () send Epk (Ky) () send Epg (Ky)

Ol | gy g || 220000

Ey, (input
Y N ORI GO Y 1N

_ A
g 6 SR-Engine
[
5 = v
= t 6

@ Eg, (output) %

—_

SGX Enclave

Figure 1: VoiceGuard architecture. User U establishes a secure
channel with the SGX enclave hosted at service provider P and
sends sensitive voice data as well as user-specific adaptation
data 0. Similarly, vendor V sends the sensitive models AM and
LM through a secure channel. P securely processes U’s voice
data using V’s models within an SGX Enclave.

hypervisor. We assume that the adversary cannot perform in-
vasive hardware attacks like extracting keys from the CPU.
We also consider physical side-channel attacks, like differen-
tial power analysis [24], out of scope. We assume the enclave
developer incorporated appropriate defense mechanism to pro-
tect against side-channel attacks leveraging micro-architectural
effects [25, 26, 27].!

5. VoiceGuard Design

Our architecture VoiceGuard enables privacy-preserving and
efficient speech processing on untrusted systems. VoiceGuard
supports different deployment scenarios, i.e., the service provider
is not necessarily a third party, but could also be the user or the
vendor. Common to all scenarios is the basic setup, i.e., at least
two input parties provide sensitive data while the computing
platform is not trusted by at least one of them.

For the sake of simplicity we explain our solution based
on the speech recognition scenario visualized in Fig. 1, where
the service provider P is an untrusted third party, e.g., a cloud
service provider. The vendor V’s private input consists of speech
recognition models. The user U’s private input is the voice data.
In this example, the output is sensitive as well and should only
be made available to the user.”

VoiceGuard works in three phases: (I) preparation, (II) ini-
tialization, and (III) operation. In the first phase, user U and
vendor V need to agree on the code to be executed in the enclave
(“Encl. Code” in Fig. 1). In the second phase, the enclave code
is instantiated. U and V use remote attestation (RA) to establish
secure channels with the enclave through which they provision
their respective encryption keys to the enclave. In the third phase,
the enclave is ready to perform speech processing. Using the
keys transmitted in the previous phase, U and V provide their
respective inputs to the enclave in encrypted form. The result of
the operation phase is encrypted with the user’s key, so only she

'Our evaluation is performed without such protection mechanisms
and thus does not reflect their impact on the performance results.
2The output could also be provided to one or multiple other parties.

can decrypt it. Next, we describe the individual phases in detail:

Preparation Phase. First, U and V need to agree on the
code to be run inside the SGX enclave. While SGX protects
enclaves against accesses from the outside, they are nevertheless
allowed to output data without any restriction. Therefore, U and
V want to make sure that the enclave code only outputs non-
sensitive data. The code typically comes from the vendor, i.e.,
V provisions the enclave code, (D in Fig. 1. Thus, V can easily
ensure that no sensitive data will leave the enclave. The code
itself is not necessarily confidential and is often open source.
However, U has to carefully analyze the enclave code in a vetting
process @ to verify that it does not contain functions which
will leak her sensitive data. The vetting process could also be
outsourced to a trusted third party, e.g., a government institution.

Additionally, the vendor provisions its acoustic model A M
and language model LM to the service provider. Both are en-
crypted with the vendor’s key Ky s.t. the service provider can-
not access the vendor’s intellectual property. At this stage, the
models are not yet loaded inside an enclave, but are written to
untrusted storage, e.g., the hard disk.

Initialization Phase. The enclave is created from the code
provisioned by V earlier @). The creation process is measured by
the SGX-enabled CPU, i.e., a cryptographic hash of the initial
memory content of the enclave is created and stored securely. If
the enclave code is manipulated before or during the creation
process, the measurement will produce a different result and the
manipulation is detected. After the creation is finished, the code
is isolated from all accesses and cannot be changed anymore.

The first operation performed by the enclave is the enclave
initialization, during which the enclave generates a key pair for
asymmetric cryptography operations like RSA [28],% with the
public key PK shown in white in Fig. 1.

Next, U and V need to establish a secure channel with the
enclave by provisioning their keys Ky and Ky, respectively, to
the enclave. We will describe this process for U. The process
for V is identical. VoiceGuard uses public key cryptography
similar to Transport Layer Security (TLS) [29], which is widely
used to secure web sites. The enclave sends its public key PK
to U. However, U needs assurance that the received PK comes
indeed from the correct enclave, i.e., the authenticity of PK must
be established. This is done using the remote attestation (RA)
feature of SGX, which generates a digital signature o (M, PK)
that binds PK to the measurement M of the enclave, @ in Fig. 1.
In particular, the public key PK, which was generated inside
the enclave, and the measurement of the initial enclave memory
content are signed with the platform key. This signature can be
verified using Intel’s public key infrastructure (PKI) for SGX.

The user verifies the signature and checks that M matches
her expectations, i.e., that the enclave has not been altered before
or during creation. If both checks were successful, the user can
be sure that PK belongs to the key pair generated by the correct
enclave and that information encrypted with PK can only be
decrypted inside that enclave. In step 3, U encrypts her key Ki/
with PK and sends the result Epx (K ) to the enclave.

At the end of the initialization, the enclave shares a symmet-
ric key with the user (K, the gray key in Fig. 1) and with the
vendor (Ky, the black key in Fig. 1).

Operation Phase. The user sends encrypted inputs
Ex, (input), i.e., audio samples, to the service provider. Since
the input is encrypted with U’s key, it can only be accessed by
the enclave ®. If applicable, U also sends her user-specific adap-

3This process leverages the hardware random number generator of
the CPU and can therefore not be influenced from outside the enclave.

79



tation parameters 6 (e.g., i-vectors), which are also encrypted
with Ky, to the enclave.

Inside the enclave, U’s input is decrypted and passed to
the speech recognition engine (“SR-Engine” in Fig. 1). The
SR-Engine has two additional inputs, the acoustic model AM,
typically a deep neural network (DNN), and the language model
LM, typically a decoding graph. AM is provided by V and
already stored encrypted at P. When AM is used, it is loaded
into the enclave and decrypted using V’s key Ky . Similarly, any
adaptation parameters 6 and the language model LM are loaded
by the enclave, decrypted, and passed to the SR-Engine.

On-demand loading of AM or LM could leak sensitive
information about their structure by observing access patterns.
This can be prevented by storing this data in a randomized order,
i.e., preventing an observer from learning useful information
from observed access patterns [30].

The result of the speech processing is encrypted with Ky
and sent back to the user D.* Additionally, the SR-Engine
may produce updated adaptation parameters 6, which are then
encrypted with K7y and sent back to U.’

Once in the operation phase, the system can be queried
repetitively by the user, thereby avoiding repeated preparation
and initialization costs.

6. Evaluation

To show the effectiveness of VoiceGuard, we created a proof-
of-concept implementation which embeds kaldi [3] in an SGX
enclave using the Graphene library OS [31]. We ran experiments
on two representative corpora: DARPA Resource Management
(RM) [32] and Wall Street Journal (WSJ) [33]. Note that the
purpose of these experiments is not to show improvements for
certain training algorithms, but rather to prove that both regu-
lar and VoiceGuard decoding yield the exact same results with
acceptable overhead. We chose RM and WSIJ since they are
well-established baseline recipes in kaldi which result in very
different net and graph sizes for performance analysis.

For RM, we train on the speaker independent training and
development set (about 4000 utterances) and test on the six
DARPA test runs: Mar and Oct’87, Feb and Oct’89, Feb’91,
and Sep’92 (about 1500 utterances in total), as a joint set. We
use kaldi’s rm/ s5 recipe and train the nnet2_online system
with i-vectors. The resulting DNN is about 3 MB (9 hidden
layers, 750k parameters), the uni- and bigram decoding graphs
are 0.5 MB and 2 MB, respectively. For details of the recipe,
refer to kaldi at commit cd6562.

For WSJ, we train on the full SI284 set (about 60 h) and test
on the Dec’93 development, Nov’92, and Nov’93 test sets. We
use kaldi’s ws j/s5 recipe and also train the nnet2_online
system with i-vectors. The resulting DNN is about 14 MB (15
hidden layers, 3.6 M parameters), the pruned trigram decoding
graph is about 641 MB; since this is not about accuracy, no LM
rescoring is applied. For details of the recipe, refer to kaldi at
commit ec98e7.

In order to determine the overhead induced by VoiceGuard,
we run kaldi on an Intel Core i7-7700 CPU @ 3.6 GHz over
every corpus and report the run time of each test in Table 1. The
overhead of VoiceGuard is between 39 % and 49 % for RM and
between 98 % and 104 % for WSJ. The higher overhead for WSJ
is due to its larger model (graph) size. In the current version of

4The result could also be sent to a different party, even a third party.
U can decrypt 6 and re-encrypt it to make individual requests from
the same user unlinkable.

80

Table 1: Performance of VoiceGuard w.rt. baseline kaldi.

Test WER  Baseline (s) VoiceGuard (s) Overhead
RM-bigram 23% 351 522 48.5 %
RM-unigram 154 % 585 815 39.3%
WSJ (dev93)  18.1% 1427 2854 100.1 %
WSJ (eval92) 134 % 876 1736 98.2 %
WSJ (eval93) 15.5% 518 1058 104.3 %

SGX, enclaves can only use up to 96 MB memory and rely on
swapping to access additional data. Table 1 also shows the word
error rate (WER) of each test, which is identical for VoiceGuard
and baseline kaldi since they execute the same code on the same
models resulting in identical lattices and transcriptions.

We also differentiate between the time required to initialize
the SR-Engine and to process a single file. The model setup time
in the baseline is 0.04 s (RM-bigram) and 0.31s (WSJ), while
the setup time for the enclave and the models in VoiceGuard is
0.95 s (RM-bigram) and 23.55 s (WSJ). Note that this overhead
is due to the initialization of enclave memory, occurs only once
when the enclave is started, and is thus not repeated across
multiple queries. The processing with RM-bigram of a 2.79 s
audio file takes 0.32 s in the baseline and 0.50 s in VoiceGuard;
with WSJ, the processing of a 6.12 s audio file takes 1.90s in
the baseline and 4.06 s in VoiceGuard. Thus, the overhead for
the processing of one file is 56 % for RM-bigram and 114 % for
WSJ, similarly to the overheads measured for the various batches,
which indicates that the enclave setup overhead is amortized
across multiple queries. Even though processing time is doubled
in some cases, our results show that VoiceGuard enables privacy-
preserving speech processing even in real time.

7. Conclusion

We proposed VoiceGuard, a novel architecture for privacy-
preserving and efficient speech processing that supports user-
specific models and can be deployed either in the cloud or on-
premise. The evaluation of our prototype implementation demon-
strates applicability for speech recognition in real time. Besides
speech recognition, VoiceGuard’s generic architecture works for
related tasks such as speaker verification or voice biometrics,
including emotion recognition and medical speech processing.

One core aspect to take into consideration when implement-
ing this architecture in production systems is the model size:
both AM and LM need to be loaded into the secure enclave, in
turn causing computational overhead both at initialization and
at run time. While small models such as RM (or models for
speaker verification) require almost no memory, typical high-
accuracy ASR systems would use much larger models than the
WSJ models evaluated in this experiment.

Thus, as part of future work, we will explore distributing
the processing across multiple SGX-enabled nodes and optimize
performance for more accurate models with larger memory re-
quirements. We will also determine the overhead incurred by
employing protection mechanisms against side-channel attacks.

8. Acknowledgments

This work was co-funded by the DFG as part of projects P3, S2,
and E4 within CROSSING, by the German Federal Ministry of
Education and Research (BMBF) and the Hessen State Ministry
for Higher Education, Research and the Arts (HMWK) within
CRISP, and by the Intel Collaborative Research Institute for
Collaborative Autonomous & Resilient Systems (ICRI-CARS).



(1]

[2]

[3

—

[4

flnar

[5]

[6

—

[7]

[8

—

[9

—

[10]

(11]

[12]

[13]

(14]

[15]

[16]

9. References

M. Marlinspike, “Technology preview: Private contact discov-
ery for Signal,” https://signal.org/blog/private-contact-discovery/,
September 2017.

M. Russinovich, “Introducing Azure confidential comput-
ing,” https://azure.microsoft.com/en-us/blog/introducing-azure-c
onfidential-computing/, September 2017.

D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek,
N. Goel, M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz,
J. Silovsky, G. Stemmer, and K. Vesely, “The Kaldi Speech Recog-
nition Toolkit,” in Workshop on Automatic Speech Recognition and
Understanding (ASRU). 1EEE Signal Processing Society, 2011.

P. Mohassel and Y. Zhang, “SecureML: A System for Scalable
Privacy-Preserving Machine Learning,” in Symposium on Security
and Privacy (S&P). 1EEE, 2017.

B. D. Rouhani, M. S. Riazi, and F. Koushanfar, “DeepSecure: Scal-
able Provably-Secure Deep Learning,” CoRR, vol. abs/1705.08963,
2017.

J. Liu, M. Juuti, Y. Lu, and N. Asokan, “Oblivious Neural Net-
work Predictions via MiniONN transformations,” in Conference
on Computer and Communications Security (CCS). ACM, 2017.

M. S. Riazi, C. Weinert, O. Tkachenko, E. M. Songhori, T. Schnei-
der, and F. Koushanfar, “Chameleon: A Hybrid Secure Computa-
tion Framework for Machine Learning Applications,” in Asia Con-
ference on Computer and Communications Security (ASIACCS).
ACM, 2018, to appear.

N. Chandran, D. Gupta, A. Rastogi, R. Sharma, and S. Tripathi,
“EzPC: Programmable, Efficient, and Scalable Secure Two-Party
Computation,” JACR Cryptology ePrint Archive, vol. 2017/1109,
2017.

C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan, “GAZELLE:
A Low Latency Framework for Secure Neural Network Inference,”
IACR Cryptology ePrint Archive, vol. 2018/073, 2018.

N. Dowlin, R. Gilad-Bachrach, K. Laine, K. Lauter, M. Naehrig,
and J. Wernsing, “CryptoNets: Applying Neural Networks to En-
crypted Data with High Throughput and Accuracy,” in Interna-
tional Conference on Machine Learning (ICML). JMLR, 2016.

E. Hesamifard, H. Takabi, and M. Ghasemi, “CryptoDL: Deep Neu-
ral Networks over Encrypted Data,” CoRR, vol. abs/1711.05189,
2017.

P. Koeberl, V. Phegade, A. Rajan, T. Schneider, S. Schulz, and
M. Zhdanova, “Time to Rethink: Trust Brokerage Using Trusted
Execution Environments,” in Trust and Trustworthy Computing
(TRUST), ser. LNCS, vol. 9229.  Springer, 2015.

K. A. Kiiciik, A. Paverd, A. Martin, N. Asokan, A. Simpson, and
R. Ankele, “Exploring the Use of Intel SGX for Secure Many-Party
Applications,” in System Software for Trusted Execution (SysTEX).
ACM, 2016.

R. Bahmani, M. Barbosa, F. Brasser, B. Portela, A.-R. Sadeghi,
G. Scerri, and B. Warinschi, “Secure Multiparty Computation from
SGX,” in Financial Cryptography and Data Security (FC), ser.
LNCS, vol. 10322.  Springer, 2017.

O. Ohrimenko, F. Schuster, C. Fournet, A. Mehta, S. Nowozin,
K. Vaswani, and M. Costa, “Oblivious Multi-Party Machine Learn-
ing on Trusted Processors,” in USENIX Security Symposium.
USENIX, 2016.

S. Chandra, V. Karande, Z. Lin, L. Khan, M. Kantarcioglu, and
B. Thuraisingham, “Securing Data Analytics on SGX with Ran-
domization,” in European Symposium on Research in Computer
Security (ESORICS), ser. LNCS, vol. 10492.  Springer, 2017.

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[31]

[32

[33]

T. Hunt, C. Song, R. Shokri, V. Shmatikov, and E. Witchel, “Chiron:
Privacy-preserving Machine Learning as a Service,” CoRR, vol.
abs/1803.05961, 2018.

M. A. Pathak, B. Raj, S. Rane, and P. Smaragdis, “Privacy-
Preserving Speech Processing: Cryptographic and String-Matching
Frameworks Show Promise,” IEEE Signal Processing Magazine,
vol. 30, no. 2, 2013.

C. Glackin, G. Chollet, N. Dugan, N. Cannings, J. Wall, S. Tahir,
I. G. Ray, and M. Rajarajan, “Privacy preserving encrypted pho-
netic search of speech data,” in International Conference on Acous-
tics, Speech and Signal Processing (ICASSP). 1EEE, 2017.

Intel, “Intel Software Guard Extensions Programming Reference,”
2014. [Online]. Available: https://software.intel.com/sites/default/f
iles/managed/48/88/329298-002.pdf

F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi,
V. Shanbhogue, and U. R. Savagaonkar, “Innovative Instructions
and Software Model for Isolated Execution,” in Workshop on Hard-
ware and Architectural Support for Security and Privacy (HASP).
ACM, 2013.

M. Hoekstra, R. Lal, P. Pappachan, V. Phegade, and J. Del Cuvillo,
“Using Innovative Instructions to Create Trustworthy Software
Solutions,” in Workshop on Hardware and Architectural Support
for Security and Privacy (HASP). ACM, 2013.

1. Anati, S. Gueron, S. P. Johnson, and V. R. Scarlata, “Innovative
Technology for CPU Based Attestation and Sealing,” in Workshop
on Hardware and Architectural Support for Security and Privacy
(HASP). ACM, 2013.

P. Kocher, J. Jaffe, and B. Jun, “Differential Power Analysis,” in
Advances in Cryptology (CRYPTO). Springer, 1999.

M.-W. Shih, S. Lee, T. Kim, and M. Peinado, “T-SGX: Eradicating
Controlled-Channel Attacks Against Enclave Programs,” in Net-
work & Distributed System Security Symposium (NDSS). Internet
Society, 2017.

S. Chen, X. Zhang, M. K. Reiter, and Y. Zhang, “Detecting Privi-
leged Side-Channel Attacks in Shielded Execution with Déja Vu,”
in Asia Conference on Computer and Communications Security
(ASIACCS). ACM, 2017.

F. Brasser, S. Capkun, A. Dmitrienko, T. Frassetto, K. Kostiainen,
U. Miiller, and A. Sadeghi, “DR.SGX: Hardening SGX Enclaves
against Cache Attacks with Data Location Randomization,” CoRR,
vol. abs/1709.09917, 2017.

R. L. Rivest, A. Shamir, and L. Adleman, “A Method for Obtaining
Digital Signatures and Public-key Cryptosystems,” Communica-
tions of the ACM (CACM), vol. 21, no. 2, 1978.

T. Dierks and E. Rescorla, “The Transport Layer Security (TLS)
Protocol Version 1.2, Internet Requests for Comments, RFC
5246, 2008. [Online]. Available: http://www.rfc-editor.org/rfc/rf
¢5246.txt

B. Fuhry, R. Bahmani, F. Brasser, F. Hahn, F. Kerschbaum, and
A.-R. Sadeghi, “HardIDX: Practical and Secure Index with SGX,”
in Conference on Data and Applications Security and Privacy
(DBSec), ser. LNCS, vol. 10359.  Springer, 2017.

C. Tsai, D. E. Porter, and M. Vij, “Graphene-SGX: A practical li-
brary OS for unmodified applications on SGX,” in USENIX Annual
Technical Conference (USENIX ATC). USENIX, 2017.

P. Price, W. Fisher, J. Bernstein, and D. Pallett, “Resource Manage-
ment RM1 2.0,” Linguistic Data Consortium, Philadelphia, USA,
1993.

J. Garofalo, D. Graff, D. Paul, and D. Pallett, “CSR-LII (WSJO,1)
Complete,” Linguistic Data Consortium, Philadelphia, USA, 2007.

81






DR.SGX: Automated and Adjustable Side-Channel Protection
for SGX using Data Location Randomization

Ferdinand Brasser
Technische Universitiat Darmstadt
ferdinand.brasser@trust.tu-
darmstadt.de

Tommaso Frassetto
Technische Universitiat Darmstadt
tommaso.frassetto@trust.tu-
darmstadt.de

ABSTRACT

Recent research has demonstrated that Intel’s SGX is vulnerable
to software-based side-channel attacks. In a common attack, the
adversary monitors CPU caches to infer secret-dependent data
accesses patterns. Known defenses have major limitations, as they
require either error-prone developer assistance, incur extremely
high runtime overhead, or prevent only specific attacks.

In this paper, we propose data location randomization as a novel
defense against side-channel attacks that target data access patterns.
Our goal is to break the link between the memory observations by
the adversary and the actual data accesses by the victim. We design
and implement a compiler-based tool called DR.SGX that instru-
ments the enclave code, permuting data locations at fine granularity.
To prevent correlation of repeated memory accesses we periodically
re-randomize all enclave data. Our solution requires no developer
assistance and strikes the balance between side-channel protection
and performance based on an adjustable security parameter.

CCS CONCEPTS

« Security and privacy — Side-channel analysis and counter-
measures; Trusted computing.

KEYWORDS

SGX; side channel defense; data randomization

ACM Reference Format:

Ferdinand Brasser, Srdjan Capkun, Alexandra Dmitrienko, Tommaso Fras-
setto, Kari Kostiainen, and Ahmad-Reza Sadeghi. 2019. DR.SGX: Automated
and Adjustable Side-Channel Protection for SGX using Data Location Ran-
domization. In 2019 Annual Computer Security Applications Conference (AC-
SAC °19), December 9-13, 2019, San Juan, PR, USA. ACM, New York, NY,
USA, 13 pages. https://doi.org/10.1145/3359789.3359809

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ACSAC ’19, December 9-13, 2019, San Juan, PR, USA

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7628-0/19/12...$15.00
https://doi.org/10.1145/3359789.3359809

Srdjan Capkun
ETH Zurich
srdjan.capkun@inf.ethz.ch

Kari Kostiainen
ETH Zurich
kari.kostiainen@inf.ethz.ch

Alexandra Dmitrienko
University of Wiirzburg
alexandra.dmitrienko@uni-
wuerzburg.de

Ahmad-Reza Sadeghi

Technische Universitat Darmstadt
ahmad.sadeghi@trust.tu-
darmstadt.de

1 INTRODUCTION

Intel Software Guard Extensions (SGX) [18, 35] enable execution
of security-critical application code, called enclaves, in isolation
from the untrusted system software. SGX was designed to ensure
confidentiality of enclave data and integrity of enclave execution
and is used in a number of academic works [4, 9, 14, 15, 20, 26, 41,
58, 63, 70].

Recent research has, however, demonstrated that SGX isolation
can be violated using software-based side-channel attacks. In SGX,
memory management, including paging, is left to the untrusted OS
[18]. By monitoring page usage, the OS can learn coarse-grained
enclave control flow or data access patterns [72, 77]. Enclave data
can also be inferred by monitoring CPU caches that are shared
between the enclave and the untrusted software, enabling more
fine-grained information leakage [11, 31, 32, 51, 64]. Such attacks
can defeat one of the main benefits of SGX—the ability to compute
over private data on an untrusted (cloud) platform.

The problem of side-channel leakage has been studied exten-
sively. Oblivious RAM (ORAM) [69] and Oblivious Execution
[44, 45, 48] are well-known defensive techniques. Obfuscuro [1]
implements those techniques for SGX enclaves, hiding all access
patterns. The main drawback is an extremely high runtime over-
head (83% on average and up to 220x). Another common defense is
manual code hardening that is typically used by developers of cryp-
tographic algorithms to make their implementations side-channel
resilient [12]. This defense is not easily applicable to enclaves writ-
ten by developers who are not security experts. Recent research has
also proposed SGX-specific defenses. T-SGX [66] and Déja Vu [17]
use the processor’s transactional memory features to prevent at-
tacks that interrupt the victim enclave repeatedly. Such features
are available only in a subset of SGX processors and the defense
only protects against attacks that leverage interrupts. Cloak [33]
and Raccoon [59] hide memory accesses to developer-annotated
enclave data, but relying on the developer to mark all (possibly
non-obvious) secret data correctly can be very error-prone. In sum-
mary, all known defenses either impose extremely high runtime
overhead, rely on the developer, require functionality that is not
available in all CPUs, or mitigate only specific side channels.

Our goals and approach. In this paper we focus on information
leakage caused by data access monitoring. Our goal is to provide
an automated tool that provides side-channel protection without

83



developer assistance and enables an adjustable trade-off between
security and performance.

We focus on data accesses, as they are the target of many recent
SGX attacks [11, 31, 51, 64]. Preventing control flow leakage is
also important, but an orthogonal problem to our work. We build
an automated tool because, similar to the development of other
software, not all enclave developers are security experts and many
would fail to correctly use solutions that require identification
of potentially subtle sources of leakage for manual annotation.
Instead, our primary goal is to strike the balance between provided
protection and performance. While our tool can be configured to
prevent all the leakage, this would incur a prohibitive performance
penalty for most applications. Instead, we aim to give a means to
enclave developers to get the best possible protection for a given
application and performance overhead.

The main idea of our approach is to randomize all data locations
in the enclave’s memory at fine granularity. The enclave generates a
secret randomization key and based on that computes a permutation
for every memory address. As a result, the adversary cannot map
the observed (permuted) memory address to the actual address,
regardless of the channel he uses to make observations [11, 31,
32, 51, 64, 72, 73, 77]. Because all data is randomized without the
need to understand its structure or semantics, we call our approach
semantic-agnostic data randomization.

Randomization is a well-known hardening technique, but our ap-
proach is different from the existing solutions that randomize code
by leveraging its known structure, such as functions or blocks. Due
to the well-known difficulty of C/C++ code analysis and pointer
tracking, no similar structure is available for data [6]. Indeed, exist-
ing randomization tools like SGX-Shield [65] focus on randomizing
the code and do not tackle the problem of data randomization.
Thus, they cannot prevent attacks that exploit data accesses, such
as [11, 31, 51, 64].

Challenges and results. Secure and practical realization of our
approach imposes a number of technical challenges. The first chal-
lenge is secure and efficient permutation computation under adver-
sarial monitoring. If the adversary is able to derive information from
the process of address permutation, he can revert the randomiza-
tion. The second challenge is efficiency — computing a permutation
for every data access is expensive and causes a high overhead. The
third problem is information leakage through repeated memory ac-
cesses. Although an individual access is effectively hidden from the
adversary, repetitive access patterns may allow (permuted) address
correlation and leakage, i.e., correlation attacks.

In this paper, we tackle the above mentioned challenges and
design and implement a compiler-based tool called DR.SGX (Data
Location Randomization for SGX) that instruments enclave code at
compile time such that all memory locations used to store enclave
data (in the heap) are permuted at cache-line granularity during run
time. We realize the permutation securely using small-domain en-
cryption [5] and leveraging the CPU’s hardware acceleration units
(AES-NI). To address correlation attacks, our tool allows periodic re-
randomization of enclave data: more aggressive re-randomization
rates hide repeated memory access patterns better at the cost of
higher run-time overhead.

84

The basic runtime overhead of DR.SGX is 4.36X without re-
randomization. Using different re-randomization rates, we mea-
sured an overhead approximately between 5X and 11x. We acknowl-
edge that this is a significant performance penalty, but emphasize
that our solution is at least one order of magnitude faster than
complete ORAM schemes like Obfuscuro [1]. Additionally, we note
that this overhead only applies to the SGX enclave, which handles
just the security-critical part of an application.

Our security evaluation reveals that the protection provided
by DR.SGX depends on the target enclave. Enclaves where pre-
dictable data access patterns, like initialization routines, are soon
followed by secret-dependent data accesses, require aggressive re-
randomization to prevent leakage, incurring higher overhead. In a
corner case, our solution can prevent any leakage by re-randomizing
enclave memory after every memory access, effectively functioning
as an ORAM implementation. However, enclaves where secret-
dependent accesses do not happen (soon) after predictable accesses
can be strongly protected with much lower overhead.

Contributions. This paper makes the following main contribu-
tions:

e Novel approach. We propose a novel approach called
semantic-agnostic data randomization as a defense against
side-channel attacks on SGX.

e New tool. We design and implement a tool called DR.SGX
that instruments code to permute an enclave’s data memory
locations at cache-line granularity and re-randomize them
repeatedly.

o Evaluation. We evaluate the performance of our system, ana-
lyze possible leakage, and show how previous attack targets
can be protected.

The paper is organized as follows: Section 2 defines our problem.
Section 3 presents our approach and Section 4 details on our im-
plementation. We evaluate DR.SGX’s performance in Section 5 and
analyze its security in Section 6. Section 7 reviews related work,
Section 8 provides discussion and Section 9 concludes the paper.

2 PROBLEM STATEMENT

In this work we focus on systems that provide an isolated execution
environment that is implemented as an execution mode of the
main CPU. In particular, the CPU’s shared resources, like caches,
are used by all execution modes of the CPU and thus are shared
between isolation domains. Our work is targeted towards Intel
SGX, however, the same model also applies to other architectures
like ARM TrustZone [2] and SANCTUARY [10] or software-based
isolation solutions [49].

Problem space. Side-channel attacks on software in general, and
SGX in particular, come in many different forms. Any kind of re-
source use that is influenced by the software’s execution and can be
observed by the adversary can serve as a side channel. For instance,
the use of electricity as well as effects thereof like electro-magnetic
emission, or the use of shared CPU caches. In this work we focus on
software side channels, i.e., such that are observable by a software
program running on the target machine, precluding physical or
hardware side-channel attacks.



In the realm of software side-channel attacks a number of distinct
variants exist. On one hand, different shared resources can be used
as a side channel, like the different caches of the CPU, or the virtual
memory management. On the other hand, side-channel attacks can
target different information, including sensitive access patterns to
data as well as secret dependent code execution paths.

In this work we focus on software attacks that target data ac-
cesses and consider attacks aiming to infer the control flow of a
program as an orthogonal problem. Our rationale is two-fold. First,
many side-channel attacks on SGX have been based on data access
patterns [11, 31, 51, 64]. Furthermore, our solution can be combined
with protections against control flow leakage attacks, for example
with the Zigzagger approach proposed by Lee et al. [42].

Adversary model. The adversary’s goal is to extract sensitive in-
formation from an isolated execution environment (enclave) [3, 8]
through cache side-channel attacks (including CPU-internal caches
like the translation look-aside buffer [32]) and/or paging side-
channel attack [72, 77]. Sensitive data in this context are not lim-
ited to cryptographic keys, which are the “classical” targets of
side-channel attacks. Instead, sensitive data have to be seen much
broader, for instance, when processing privacy-sensitive data in the
cloud [11].

The adversary can freely configure and modify all software of
the system, including privileged software like the operating system
(OS). He knows the initial memory layout of the enclave, i.e., the
code and initial data of the enclave. Furthermore, we assume that
the adversary can initiate the enclave arbitrarily often.

However, the adversary cannot directly access the memory of
the enclave. The internal processor state (e.g., the CPU registers) is
inaccessible to the adversary, in the event of an interrupt the state
is securely stored in an isolated memory region. The adversary
cannot modify the code or initial data of the enclave, as enclave’s
integrity can be verified using remote attestation.

We consider our work orthogonal to the recently discovered plat-
form vulnerabilities Meltdown [43] and Spectre [39] that leverage
transient execution to read secrets across isolation boundaries. Al-
though these vulnerabilities apply to SGX enclaves as well [16, 71],
Intel has already issued security updates for SGX that address such
attacks [16]. Also, SGX platform keys from unpatched (and thus
potentially compromised) platforms can be identified at the time
of attestation and revoked [16]. The more general problem of data-
access driven side-channels is much harder to solve in architectures
like SGX. DR.SGX addresses this latter and more difficult problem.

We assume the position of the attacker to be as strong as possible
and therefore we will assume him to have a noise-free cache side-
channel and to be able to obtain a “perfect cache trace” of the en-
clave. This means that he can observe all memory accesses of an en-
clave, e.g., using a cache attack technique such as Prime+Probe [54].
He can precisely determine which cache line has been used by
the enclave and also the order in which the cache lines have been
accessed. The adversary cannot extract information which is more
fine grained than accesses to cache lines, i.e., the offset inside a
cache line is not observable to him (see Section 8 for a discussion of
possible attacks with finer granularity). Additionally, for each mem-
ory access, the adversary can gain information about the accessed
memory pages of an enclave [72, 77].

More formally, trace t = {c1,p1}, ..., {cn, pn} is an ordered list of
side-channel observation pairs that capture every memory access
that the victim enclave makes. In each observation pair, c; is the
part of the memory address that determines the cache line the
accessed address gets mapped to and p; is the part of the address
that determines the accessed memory page. On current Intel CPUs
the cache line size is 64 bytes, thus, the last six bits of an address
are oblivious to the adversary.

Design goals. General statements about which memory accesses
of a program could leak information are hard to make in practice.
All memory accesses must be assumed to potentially leak informa-
tion if the attacker can associate them with relevant data elements
or structures. For the adversary it is sufficient to distinguish two
memory locations to learn one bit of information. Those memory
locations could be two different data structures, e.g., two variables,
or different elements within the same data structure, e.g., different
entries in a table. To protect all possible programs, the data struc-
tures of a program and the elements within data structures both
need to be randomized.

The goal of our work is to provide a protection mechanism
against side-channel attacks that can be applied to arbitrary enclave
programs without developer assistance. In particular, the developer
must not be required to follow any rules or guidelines for program-
ming his application or add annotations to the source code. While
annotating “critical” data in general helps improving the perfor-
mance of most solutions, it is also very error-prone: especially in
non-cryptographic applications, it is not always obvious which
accesses to data objects might leak sensitive information. This is
crucial as most software developers are not security experts and
cannot comprehensively identify data that could leak information.

The goal of DR.SGX is to provide a trade-off between security
and cost in the design space reaching from unprotected processes,
over plain SGX enclaves, enclaves with DR.SGX to oblivious RAM
(ORAM) solutions. On the one hand, plain SGX enclaves provide
basic data protection with little performance penalty; on the other
hand, schemes like Obfuscuro [1] that implement ORAM for every
memory access impose very high performance overheads (83x
on average and up to 220x). DR.SGX strives to protect enclaves
better than plain SGX while keeping the performance overhead at
least one order of magnitude lower than systems like Obfuscuro.
DR.SGX’s security parameter (the re-randomization window w: see
Section 3) allows it to be configured to cover the spectrum between
plain SGX and full ORAM for data accesses. With w = 1 DR.SGX
implements ORAM, admittedly in a costly way. On the other hand,
w = oo only randomizes the initial memory layout of an enclave,
which can be sufficient for some enclaves; we discuss this scenario
in Section 6. For most enclaves a window size between those two
extremes can be chosen. We evaluate different windows sizes in
Section 5.

3 DR.SGX

Our core idea is to break the link between side-channel observations
made by an attacker and the sensitive information processed by the
victim. Side-channel attacks inherently rely on the correlation be-
tween an observable effect and the data the attacker aims to extract.
Our defense obfuscates the link between memory locations and

85



----|static const unsigned char FSb[256] = {
0x63, @x7C, Ox77, Ox7B, OxF2, Ox6B, Ox6F, OxC5,
0x30, 0x01, 0x67, Ox2B, OXxFE, OxD7, OxAB, 0x76,
e b

int mbedtls_aes_setkey_enc( ... ) {
... ((uint32_t) FSb[(RK[3] >> 8) & @XFF]) ...
}

FSblSZ..ZSS

FSb1g. 255

W
/%/\/ FSbes 127
%

Initial memory L, L,
layout (L)

Figure 1: DR.SGX’s memory block randomization splits
large memory structures like arrays into small blocks and
reorders them. During the run time of an enclave its mem-
ory layout are re-randomized using the permutation func-
tion 7. Each memory block is the size of a cache line (64 B),
i.e., the finest granularity observable by the adversary.

data elements. Data elements are located at randomized memory
locations, so the adversary cannot deduce which data element was
accessed from an observed memory access location. The adversary
no longer learns which data element was accessed but only learns
that some data element was accessed.

DR.SGX splits enclave memory into small blocks that are ran-
domly reordered, resulting in an unpredictable memory layout from
the adversary’s point of view. Figure 1 illustrates the concept on
the example of the S-box of an AES implementation. By default
the S-box (FSb) is stored as an array in consecutive memory at a
predictable location, shown on the left as initial memory layout Lo
in Figure 1. Through a cache side channel an adversary can observe
which part of the S-box is accessed. Since the accesses to the S-box
depend on the secret key the adversary can use this information to
recover the key. However, the adversary cannot observe accesses
to individual bytes of the S-box but only at the granularity of cache
lines (64 bytes). DR.SGX divides all data memory of an enclave into
blocks of cache line size, illustrated by the blocks forming Ly in
Figure 1. These blocks are reordered by a permutation function 7y,
resulting in a randomized memory layout L;. Throughout the run-
time of an enclave the memory layout is constantly re-randomized,
by applying a permutation function 73 on L; a new and different
memory layout Lj is created. As a result, the memory locations
and thus the cache lines corresponding to the S-box are frequently
changing, hindering the adversary’s ability to link observed (cache
or paging) accesses to the S-box.

86

3.1 Requirements and Challenges

Below we describe the main challenges to tackle when implement-
ing this idea.

Semantic gap. Providing side-channel protection through data
randomization without developer assistance (e.g., code annotations)
is a challenging task due to the semantic gap that is inherent to
unsafe languages like C and C++. Currently C and C++ are the
only programming languages officially supported in the software
development kit (SDK) that Intel provides for the development of
SGX enclaves.

Re-randomization. Randomizing the memory layout of a pro-
gram once to prevent an adversary from learning which data has
been accessed is not sufficient. The adversary can determine the
relation of memory locations and data objects based on various
information. For instance, the initialization of data structures can
reveal data locations. In the example in Figure 1, the S-box is ini-
tialized during the creation of the enclave, however, other AES
implementations initialize the S-box at run time which allows the
adversary to learn the locations of all parts of the S-box array after
the initial randomization of the memory layout. Similarly, access
frequency can reveal the randomized location of data elements: if
a particular object is accessed a predictable number of times the
adversary can identify the object by finding the memory location
that was accessed the expected numbers of times (frequency analy-
sis). To thwart the adversary in recovering the randomized memory
location of data objects, their locations need to be changed through-
out the runtime, such that the adversary cannot link data accesses
to data objects.

(Re-)randomization under attacker’s observation. All memory-
related actions of the attacked enclave can be observed by the
adversary, including those required during the initial data random-
ization and during the re-randomization of the memory layout.
The initial (un-randomized) memory layout is known to the ad-
versary, i.e., he can monitor memory events while data is copied
to its randomized locations. Similarly, if the adversary managed
to recover information about the randomized memory layout L,
the adversary could link the re-randomization operations used to
transfer data from L, to L, and thus also gain knowledge about
the new layout L, 4+1. Therefore, the randomization has to be done
in such a way that its effects are not observable by the adversary.

3.2 DR.SGX Design

Our solution, a compiler-based tool called DR.SGX, addresses the
design goals and challenges described above by randomizing all
program data at fine granularity and re-randomizing the data con-
tinuously throughout the run time of the program.

Figure 2 shows the system view of DR.SGX. The trusted com-
puting base (TCB) of an SGX enclave includes the CPU package
and an isolated section of the main memory (RAM). However, the
CPU caches, translation look-aside buffer (TLB) and the page tables
are observable by the adversary. The data cache of the CPU can be
used to observe memory access patterns of an enclave. On the other
hand, the paging mechanism can be exploited in different ways to
learn about memory reads and writes by an enclave. By observing
cache conflicts in the TLB, the adversary learns which memory



RAM
[Funct, [ Funci, | [ Funci, | )
e
&
[FuncM, [FuncM, | [FuncM, |
unsigned char FSb[256] =
F
V|
g
n o
Registers
_____ | FSbea, 127 [FSb1op. 265
Permutation Buffer
Stack
\. J

AES: Advanced Encryption Standard  TLB: Translation Look-aside Buffer
RNG: Random Number Generator

Figure 2: DR.SGX’s system design. The main memory of
an enclave is not directly accessible by the adversary, how-
ever, the adversary can observe memory access indirectly
through cache and paging side channels. The CPU’s internal
state stored in registers and/or special function units (e.g.,
the AES engine) are not observable by the adversary.

pages were used. Additionally, the adversary has control over the
page tables also allowing him to learn which memory pages an
enclave accessed.

However, an SGX enclave also includes components that cannot
be attacked through a software side channel. The CPU’s registers
and accesses to them cannot be observed by the adversary.! Also the
execution unit and special function units, like the random number
generator (RNG) or the AES engine, are secure when operating over
registers. DR.SGX combines these parts and function units of SGX
that are secure against side channels, to obfuscate main memory
accesses to the adversary.

DR.SGX performs randomization at granularity of cache lines,
the finest granularity at which the adversary can distinguish mem-
ory accesses (Section 2). Figure 2 shows how DR.SGX uses a random
permutation function r to reorder the program’s data in memory.
Since the adversary cannot identify individual elements within a
single cache line, accesses to the first array element (FSb[@]) and
the 64th element (FSb[63]) are indistinguishable for the adversary.
The randomization is based on secret values which are generated
and only accessible inside the enclave and only processed by the
hardware AES engine of the CPU. The CPU’s AES engine holds all
state and intermediate results in registers which are not observ-
able by the adversary, hence, the adversary cannot learn about 7
through cache or paging side channels.

!The LazyFP [68] attack cannot be used on SGX enclaves, since the register state is
cleaned by the processor before exiting the enclave.

DR.SGX randomizes global variables and the heap. The stack
cannot be easily randomized, since the hardware expects it to be
contiguous. Thus, variables on the stack larger than a cache line are
moved to the heap, and replaced by a pointer on the stack. The re-
maining variables are protected using multiple memory layouts: for
every function n variants are created (Func1q, Funcy, ..., FuncMp
in Figure 2), all with different stack memory layouts. On every
invocation of a function one of its n variants is chosen randomly.

The size of the memory region (heap) for the enclave’s data is a
parameter of the permutation function 7 (see Section 4).

Memory access instrumentation. DR.SGX performs randomiza-
tion on cache line granularity for two reasons: (a) randomizing at
finer granularity provides no security advantages, and (b) random-
izing in a data structures aware fashion is impractical due to the
semantic gap. Our randomization requires that all memory accesses
are instrumented, which we ensure using a compiler pass. The pro-
gram code determines the memory location (i.e., address) of the
data in the original, un-randomized layout. Then, before the access
is performed, the randomized location of that address is calculated.
The data is then accessed in its new, randomized location.

As we will elaborate in later sections, the cost of performing the
randomization calculation for every memory access is significant.
We overcome this problem by implementing a “permutation buffer”.
The permutation buffer, similar to an address translation cache,
holds the randomized locations of recently used data. Hence, for
data locations stored in the permutation buffer the function 7 does
not need to be recalculated. However, accesses to the permutation
buffer itself must be protected from leaking information. Therefore
the buffer is accessed in an oblivious way.

Initial randomization. The initial randomization of the enclave’s
data needs to be done in a way that cannot be observed by the
adversary, to keep him from learning the randomization function
7 or the new memory layout. In particular, if the adversary can
observe a read operation from the un-randomized initial memory
layout and a subsequent write operation to a randomized address,
he can link data structures to the randomized memory locations.

A general approach to break this linkage is to load a set of data
into CPU registers (register operations cannot be tracked by the
adversary) and write the data in a random fashion to their new
locations. This approach, however, is limited in the amount of the
data that can be loaded at once into registers, enabling the adversary
to learn partial information about the randomized memory layout.

DR.SGX uses a randomization method which hides fine-grained
(cache-line granularity) memory locations from the adversary.
Specifically, we use non-temporal writes [36] that evade the
CPU’s caches, therefore the adversary cannot observe memory
addresses written during the initial randomization. Although the
non-temporal writes prevent accesses to the new memory layout
L; from being cached, the adversary can still observe the written
memory locations through the more coarse-grained paging side-
channel (that is, the adversary’s trace contains a page event p;, but
no cache event ¢; for the non-temporal write). This allows him
to know, for each memory block read from the previous memory
layout Lo, to which memory page it was written in L. However,
multiple cache lines are written to each page: assuming 4 KB pages,
64 cache-line-sized memory blocks will be written to the same page.

87



int var[1024];

int main(int argc, char const *argv[]) {
... ]

var[256] = 42;
[...]

@var = common global [1024 x 132] zeroinitializer, align 16
define 32 @main(i32 %argc, i8%** %argv) #0 {
]

[...
store i32 42, 132* getelementptr inbounds ¢
([1024 x i32], [1024 x i32]* @var, i64 0, 7164 256), align 16

@var = common global [1024 x 132] zeroinitializer, align 16

define 132 @main(i32 %argc, 18%* %argv) #0 {
-7

%store.arg.int = ptrtoint 132* getelementptr inbounds ¢

([1024 x i32], [1024 x i32]* @var, i64 0, 7164 256) to 164
%addrencrypt.res.int = call 164 @addrencrypt(i64 %store.arg.int)
%addrencrypt.res = inttoptr 164 %addrencrypt.res.int to i32*%
store i32 42, 132* %addrencrypt.res, align 16

Figure 3: Code instrumentation with DR.SGX. Before each
memory access the randomized memory address is calcu-
lated. The calculation is done by a function provided by the
DR.SGX library (Rand. lib), which can be written in C / C++
and is included in the instrumented binary. The snippets
show the instrumentation of a sample store instruction.

To hide this access pattern the initial randomization of DR.SGX
accesses all memory pages of L for each memory block that is
moved, see Section 6.2.

DR.SGX continuously re-randomizes the memory layout. Start-
ing from the initial memory layout Ly a random permutation func-
tion 1 is applied to derive the first randomized layout L1 = my (Lo).
After a configurable window w the memory layout is re-randomized,
applying 73 to derive Ly = mp (Ll).

Like with the initial randomization, the adversary (who can ob-
serve reads from L, and writes to L,+1) could link those operations
to learn the relation between those memory layouts. Again, DR.SGX
uses non-temporal writes to hide this information. In Section 6 we
explain how a small number of re-randomization rounds hides the
location of the element from the adversary completely.

4 DR.SGX IMPLEMENTATION

This section provides further details of DR.SGX. We explain how we
implemented the key-components of DR.SGX: access instrumenta-
tion, permutation computation, initial randomization, permutation
buffering, and re-randomization. Throughout this section we will
refer to data memory regions or data memory accesses simply as
memory regions and accesses (omitting data).

4.1 Memory Access Instrumentation

DR.SGX randomizes the memory locations of an SGX enclave’s data.
The enclave, however, has been developed targeting a linear (virtual)
memory model. Therefore, each memory access of an enclave has
to be instrumented to determine the correct randomized memory
location of the data element that is meant to be accessed.

88

We extended the LLVM compiler [47] to instrument the enclave
code, working at the intermediate representation (IR) level. Figure 3
shows on the top the high-level compile process of LLVM. A source
file on the left is translated by the compiler front-end @, Clang
in the case of C/C++, into a LLVM intermediate representation
(IR) @. The IR is then translated by the back-end @ into target
architecture specific binary code @, which in our case is Intel x86
64-bit. With DR.SGX the IR file is processed by a compiler pass
that instruments all memory access instructions (instrumentation
pass) before it is translated into machine code @ Furthermore,
DR.SGX adds a small library (b), which contains functions used
to perform the randomization. This library can be written in a
high-level language like C/C++ and is translated into IR as well.

Additionally, the instrumentation pass examines all allocations
on the stack and transforms those which are larger than a single
cache line into heap allocations. A pointer to the heap allocation
is placed on the stack and the code is modified to access the heap
allocation instead of accessing the stack.

Instrumentation example. Figure 3 illustrates the instrumentation
of a write access to an array. The code snippet in the C file shows
a write access to the 257-th element of an integer array var. The
code snippet in the middle shows the intermediate representation
(IR) of the write operation. The array is accessed by calculating the
pointer to the 257-th element of the array, using the LLVM func-
tion getelementptr. The value 42 is then stored into this memory
location. The instrumented IR is shown in the bottom code snip-
pet. Again, a pointer to the 257-th element of var obtained using
getelementptr and stored in the variable store.arg.int. How-
ever, before storing the value 42, store.arg.int is passed to the
permutation function addrencrypt. The function returns the per-
muted location of the 257-th element of var, which gets cast from
an integer value to a pointer value (inttoptr). The value 42 is then
stored to the permuted location addrencrypt.res.

4.2 Random Permutation

DR.SGX uses run-time data randomization, which is required for
both the unobservable initial randomization as well as the re-
randomizations. This means that the randomized location of data
must be recovered dynamically. Using a purely random permutation
would require storing extensive meta-data, which would then need
to be accessed in an unobservable way.2 Therefore, DR.SGX uses
a pseudo-random permutation function to determine the random
location of data. This approach has two advantages: (1) collisions,
i.e., different element mapped to the same location, are inherently
avoided, and (2) randomized locations can be computed based on
a non-secret algorithm and a key, which is small compared to the
meta-data in the naive approach. However, the permutation func-
tion itself must be resilient against side-channel attacks, otherwise
the adversary can learn the randomization secret and disclose the
accessed memory locations.

We use small-domain encryption for our random permutation
function. The domain size must be in the order of memory size
used by the enclave employing DR.SGX (divided by the size of a

2The need to maintain meta-data is one of the main problems when using ORAM to
protect SGX enclaves from side-channel attacks targeting the enclave’s main memory
accesses.



cache line). In particular, we use the FFX Format-Preserving En-
cryption scheme, which is based on a 10-round Feistel network [5].
As the underlying block cipher for FFX we used AES, for which
the hardware acceleration extension AES-NI [36] is available in all
SGX-enabled CPUs. AES-NI provides both good performance and
resiliency against cache-based side-channel attacks.

Our implementation only supports single-threaded enclaves.
However, standard software-engineering techniques can be em-
ployed to extend the support to multi-threaded enclaves. Only
the re-randomization operations need to be synchronized between
threads.

4.3 Initial Randomization

The initial randomization is particularly challenging since the ad-
versary knows the initial memory layout of an enclave. If we used
standard write operations to copy data from the initial data section
Ly to the randomized section Li, the adversary would be able to
learn the randomized layout.

In DR.SGX we use non-temporal write instructions to tackle
this problem [36]. Non-temporal write instructions provide the
processor with the meta-information that the data will not be used
again soon by the program and it is not necessary to store them in
the cache. On current Intel processors memory write operations
using this instruction immediately affect the DRAM and are not
buffered in the CPU’s cache,’ i.e., they are invisible to the adversary.
Page-granularity side-channels information is hidden by accessing
all heap memory pages for each block.

The secret keys we need as input to our random permutation
are generated by the hardware random number generator inside
the enclave. We use rdseed to obtain true random numbers from
the CPU [36]. This way the adversary cannot influence or obtain
the secret key.

4.4 Stack Randomization

DR.SGX uses the stack only for data elements that are smaller than
a cache line, all other data are moved to the heap where they are
subject to (re-)randomization. For the remaining data elements on
the stack we use an approach inspired by the code randomization
method introduced by Crane et al. [19]. The stack layout of each
function is randomized by reordering the local variables on the
stack. At compile time n variants of each function with different
stack layouts are generated. At run time one function variant is
chosen at random every time it is invoked. DR.SGX uses n = 10
variants for each function, as the empirical evaluation [19] suggests.

4.5 Permutation Buffer

Performing the calculation for the pseudo-random permutations
is costly and needs to be performed for each memory access. To
improve the performance we introduced a buffer for memory trans-
lations (Permutation Buffer in Figure 2). Permutation is performed
at cache line granularity, i.e., all bytes in one cache line in L are
mapped as a single block. When this block is moved to Ly it will,
with high probability, be mapping to a different cache line, and to

3We verified this behavior on a Skylake test system by issuing a non-temporal write
followed by a read from the same cache line, and verifying that the read generates a
cache miss on all three cache levels.

yet another cache line in Ly, and so on. On recent x86 processors
a cache line is 64 bytes, thus, by storing the result no extra cal-
culations are necessary for memory accesses that fall within the
same cache line. Our buffer is currently 1 KB which allows for a
direct-mapped storage of permutation results for 256 translations.
To prevent leakage through our permutation buffer we access it in
a way which is oblivious to the adversary. For each read operation
to the buffer we simply access all CPU cache lines in our permu-
tation buffer. Moreover, we randomize the location of the items
in the permutation buffer by performing an xor operation with a
randomly-generated value before determining which buffer item to
use. The random value changes and the buffer is invalidated every
time a re-randomization happens.

4.6 Re-Randomization

DR.SGX constantly re-randomizes the memory layout of an enclave.
Figure 2 shows the overall memory layout. The blocks are copied
from L, to Ly41 in the same order as they appear in Lj, so the
adversary only observes reads to every block in L, in order. Like
in the initial permutation, non-temporal write operations are used
to hide fine-grained writes.

For each cache-line-sized memory block in L,;, DR.SGX needs
to compute the corresponding addresses in L, and in L,1. Hence,
the cost of re-randomization primarily comes from the permutation
calculations required. However, the pipelining of AES instructions
in the CPU makes encrypting multiple addresses together faster
than encrypting them sequentially. This reduces the cost for the re-
randomization and leads to better overall performance of DR.SGX.

5 PERFORMANCE EVALUATION

We evaluated the performance of DR.SGX using the benchmark
suite Nbench [13].# We use Nbench because it has been previously
used to analyze SGX performance [65], it relies only marginally on
the file system, and it is relatively simple (5217 LoC), so it can easily
be adapted to run inside an SGX enclave. The original version relies
on timestamps to run each benchmark for an equal amount of time;
since timestamps are not available in SGX enclaves we manually
chose for each benchmark the lowest number of iterations that
yielded a run time greater than 100 ms. We measured the run
time of the benchmarks by briefly switching to the non-SGX mode
and reading the hardware time stamp counter. We measured the
overhead due to this mode switch and it is negligible compared
to the overall run time. Our test system is equipped with an Intel
Skylake i7-6700 processor clocked at 3.40 GHz, 128 MB Enclave
Page Cache, running Ubuntu 14.04.4.

Memory overhead. The memory overhead of DR.SGX is mainly
due to (1) heap randomization and (2) stack randomization. For the
heap randomization two memory areas as large as the heap need to
be reserved while the re-randomization is in progress. In our evalu-
ations the heap size was set to values between 512 KB and 4 MB.
Whenever the re-randomization is ongoing an additional 100% for
the heap size is required. Stack randomization is based on providing
n variants for each function. This increases the memory required

4Benchmarking SGX code can be challenging, since well-known benchmark suites

rely on a number of features, including system calls, timestamps, and the file system,
which are not directly available in SGX.

89



M GEPinstr. M Function 10x Address encryption

12x

10x

8x

Overhead

2% . .
Ox
& & o & & o P RN N
- SR SN IR = o) & > &
$\><(‘ o o~ & 6(\? <> pe® © Y\\{(\‘(\ NS 606\

Figure 4: Overhead of each benchmark, using various sub-
sets of DR.SGX.

for the code by factor n. We chose n = 10, thus the overhead is 10x.
The size of the stack itself does not increase. For each invocation at
run time only one of the function variants is used, i.e., the number
of stack frames to be stored on the stack does not increase.

Runtime overhead of DR.SGX modifications. We evaluated
DR.SGX with different subsets of its components active. To get
a better understanding of the impact DR.SGX’s individual compo-
nents we ran all benchmarks multiple times activating one more
components for every repetition. A breakdown of each component’s
overhead is shown in Figure 4.

We first tested our mechanism to move large stack allocations to
the heap, i.e., replacing allocations on the stack larger than 63 bytes
with calls to malloc. We measured a negligible overhead well be-
low 1%, which is too small to be visible in Figure 4. Then, we
tested the instrumentation of reads and writes (LLVM instruction
getelementptr). In DR.SGX, instances of this instruction are fol-
lowed by a call to our permutation function, unless the argument
to the instruction is on the stack. In this test, the identity permu-
tation function was used, which returns immediately. Therefore
overhead reflects the impact of the instrumentation alone. We mea-
sured overheads between 0 and 102%, with a geometric mean of 39%
(GEP instr. in Figure 4). Next, we added our stack randomization
using function duplication. The geometric mean of the additional
overhead is 46%, while the maximum is 135% (Function 10X in Fig-
ure 4). Finally, we tested our complete system (without periodic
re-randomization). Overheads range between 0.39x and 12.77X,
with a geometric mean of 4.36x. The benchmarks Assign and LU
have the biggest overheads, 10.56x and 12.77x respectively, due
to high miss rates in our permutation buffer (their miss rates are
~ 13X higher).

Runtime overhead of re-randomization. Next, we assessed the
impact of various window sizes w and heap sizes h on the run
time overhead and re-randomization window duration. We chose
our heap size h € {4 MB, 2 MB, 1 MB, 512 KB} but other values
are also possible. We measured the time required to perform a
re-randomization by dividing the CPU cycles required by the pro-
cessor’s nominal speed, 3.4 GHz. The re-randomization requires
7.31 ms, 4.07 ms, 2.26 ms, and 1.26 ms respectively for h = 4 MB,
h=2MB,h=1MB, h=512KB.

90

M No re-random. w=10M w=3M M w=1M [l w=300K

30x
25x%
20x

15x%

Overhead

10x

5x

0x

& & P et o XN N
&° (P o e o o S

o
P &
W 09 oW

o®

Figure 5: Overhead of each benchmark, with heap size h
= 4 MB, without re-randomization and with various re-
randomization windows w.

O h=512KB © h=1MB h=2MB © h=4MB

13x
12x
11x
10x
9x
8x

6x
5x

Overhead (geo mean)

No re-randomization

3x

10K 100K ™ 10M

Re-randomization window size (w)

Figure 6: Geometric mean of the overheads, for various heap
sizes h and various window sizes w. The black line represents
the overhead without re-randomization.

We first measured the run time overheads for h = 4 MB, w €
{10 M, 3 M, 1 M, 300 K}. In Figure 5, the left-most bars in each group
represent the overhead without re-randomization (like Figure 4),
with a geometric mean of 4.36X. Re-randomization every 10 million
accesses (w = 10 M) increases the overhead slightly (geometric
mean of 4.76X). Reducing the window to 3 M, 1 M, and 300 K brings
the geometric mean of the overhead to 5.45%, 7.29%, and 12.21x.

We then measured the overhead for smaller heap sizes. We ex-
pected that halving both the heap size and the window size, i.e.,
re-randomizing a heap half as big twice as often, would yield similar
performance results. Figure 6 shows the overhead depending on
the window size for various heap sizes and confirms our intuition.
Each line refers to a heap size twice as big as the line to its left. The
black line at 4.26x is the overhead measured in the case without
re-randomization and represents lim,y—, o of the overhead; in other
words, increasing the values of w further would bring diminishing
results.

Summary. The performance of our solution depends heavily on
the user parameters. For example, the overhead is 4.8% for parame-
tersh = 1MB and w = 2.5 M.

Developers and system administrators can adjust the parame-
ters of DR.SGX based on the memory needs of their application



and the available computing resources. For example, if the deploy-
ment scenario requires 1 MB of heap memory and allows up to
8% overhead, the window size w can be set to 250 K for maximal
re-randomization rate and security (see Figure 6). We consider this
task of parameter tuning feasible for most developers. A typical
developer may not be able to assess subtle sources of information
leakage for correct source code annotation, but usually the devel-
oper knows the application’s performance requirements and can
set h and w accordingly.

Finally, we emphasize that in many SGX application scenarios,
the overhead of the enclave (imposed by DR.SGX) is not directly
the overhead of the entire application. For example, SGX-based
applications that perform networking or database queries spend
most of their time in the unprotected part of the application, and
therefore the slowdown of the enclave represents only a minor
part of the application’s performance. Thus, in many cases, a high
enclave overhead can still be acceptable for the overall performance.

6 SECURITY ANALYSIS

In this section we analyze the security of DR.SGX. We focus on the
security properties of our novel heap data protection mechanism.
Our stack data protection follows a known approach, evaluated
in [19].

The goal of the adversary is to recover secret data from the victim
enclave based on secret-dependent (heap) data access patterns to
data. Recall that we consider a powerful adversary that gets a perfect
trace of all cache and page events. Since all known attacks [11, 31,
51, 64] exhibit significant noise in the cache channel, this is an over-
approximation of the capabilities of today’s attackers and allows
us to reason about the effectiveness of our solution against more
powerful future adversaries.

In a data-driven side-channel attack, the adversary leaks infor-
mation by monitoring secret-dependent access patterns. We model
this as follows. The targeted victim enclave has secret data s of any
length. The secret could be a cryptographic key, medical data, finan-
cial information or sensitive machine learning training sets. The
enclave has a data structure d that consists of n elements (e, ..., en)
and is accessed based on s. The data structure could be a look-up
table, S-box, index, or in-memory database. The size of each ele-
ment e; is the cache line size (smaller elements cannot be attacked,
larger elements can be modeled as multiple elements). Based on
the value of s, the enclave makes k accesses to different elements of
d. Such access pattern determines the value of s. The enclave may
also make predictable accesses to d (e.g., iterate through it during
initialization).

6.1 Finding Attack Position in Trace

We start our analysis by explaining how the adversary can find the
“attack position” in the side-channel trace, i.e., the position where
(permuted) secret-dependent data accesses take place. The adver-
sary can compile the victim enclave without DR.SGX protection and
instrument those parts of the enclave where the secret-dependent
accesses to d happen. The adversary can then run the instrumented
enclave, monitor side-channels, and based on the instrumentation
learn the position in the trace where the secret-dependent accesses
are located. After that, the adversary can run the victim enclave that

is protected with DR.SGX using the same inputs and again monitor
side-channels. Assuming a deterministic enclave,’ the adversary
obtains a protected trace that includes additional randomization
events to the trace (see Figure 7). Next, the adversary can filter out
all randomization events. Since we use non-temporal (NT) writes
that bypass the cache for randomization writes, the adversary finds
each page event p; that has no corresponding cache event ¢; in
the trace. For each such randomization write, the previous event
in the trace is a read due to the randomization. The adversary re-
moves all randomization events. The known attack position in the
non-protected trace corresponds to the same position in the filtered
protected trace.

6.2 Inferring Secret Enclave Data

Once the attack position is known, the adversary can attempt to
infer secret data s from the permuted memory accesses in the attack
trace. The adversary’s success depends on the type of the victim
enclave.

No predictable accesses. We first consider enclaves that make no
predictable accesses to d (i.e., the enclave accesses d only based on
a pattern that is derived from the secret data s). For such enclaves,
DR.SGX provides strong protection due to its initial randomization
that is illustrated in Figure 7. The enclave’s data is copied from the
known, original memory layout Ly to a new randomized memory
layout L1 in blocks of cache line size using NT writes. For each
block, the initial randomization process performs one read access
to the original memory layout and NT writes to all memory pages.
Because NT writes hide the accessed address at cache-line gran-
ularity, the adversary gains no knowledge of the new location in
L;. The same process is repeated for every memory block and in
the end the location of each block in L; is equally likely for the
adversary.

By observing the permuted side-channel trace, the adversary
may infer execution characteristics such as frequencies of accesses
to the same memory address (e.g., address a was accessed x times).
However, because permuted addresses a can refer to any actually
accessed addresses, such frequency analysis does not help the adver-
sary to infer the secret data s, unless the enclave exhibits predictable
access patterns which we discuss below.

Assuming no predictable access patterns, the best option for the
adversary is a guessing attack. The adversary knows the permuted
addresses of k secret-dependent accesses. For each access, every
address, and thus every data structure element e;, is equally likely.
After observing k distinctive accesses to n elements, the number of
possible alternatives will be given by an arrangement of k from n:
A],‘l = (nf_‘k)' For example, a data structure of n = 50 elements and
any number of secret-dependent accesses resulting in 25 distinctive
accesses to the data structure, the amount of arrangements is 1.96 X
10%, which gives the chance of a random guess of approximately
27131 We conclude that DR.SGX provides strong protection for
enclaves that have no predictable accesses to the data structure d.

5We consider a deterministic enclave, because that is the best case the for adversary
for building the tracking tree. Thus, the following analysis based on this assumption
represents the best case for the adversary regarding finding the attack position in the
trace.

91



e
possible location
(adversary’s view)

tracked data
element (e;)

tracking tree
A

1
L, m —Ll H Lo Moty Lot Mo Lovz Moe3 Lnss Mavg _Lnd
] ]
page 0 i /'
1
1
page 1 ! [
- —_— -
5 ! k" /
page : \
page 3 :
1
! —
! .. eoe ooe LTy
oo 1
page 1021
1
page 1022 [ H
— 1 p =
page 1023 :
H |
1
L ) ! L J
T 1 |l
1 . :
initial randomization | randomization ti domizati
: read randomization runtime re-randomization
side-channel . _____________ , write
trace i
p; = page event ! data memory access
(high address bits) pi|p| ps| s | Ps| ps | Pr P37 structure d l |
c; = cache event c; (o2} C3 Cy Cs Cs; | e; e, e; e, | e, secret data s |
(mid address bits)

L J

T
randomization events

t |

side-channel monitoring

Figure 7: Location tracking. By identifying missing cache events in the trace, the adversary can learn the re-randomization
writes (marked in blue) and preceding re-randomization reads (marked in green). The initial randomization hides destination
addresses completely. The adversary can build a tracking tree, where the source address of each re-randomization is known
with cache-line granularity and the destination address with page granularity. After few re-randomization rounds, the tracked

memory location can reside in any memory location.

Predictable accesses. The second case that we consider is a vic-
tim enclave that exhibits predictable access patterns to d, e.g., the
enclave may initialize d in an order that is known to the adversary.
The enclave may also access elements of d a predictable number
of times. Such predictable accesses in the trace will disclose the
current permuted memory addresses for each accessed element e;.

Figure 7 illustrates an example scenario, where the permuted
address of element e; is revealed to the adversary in memory lay-
out Ly,. The next re-randomization round moves the data of that
element to a new location in layout L,41. Since the move operation
is implemented using NT writes, the adversary learns the new page
in Ly4+1, but not the fine-grained location. The leakage of the target
page allows the adversary to construct a tracking tree for element
ej.

The expansion of the tracking tree depends on the size of the
used memory in the victim enclave. For example, if the victim en-
clave uses 2 MB memory (out of total 4 MB address space), each
memory page contains on the average 32 blocks. On the next re-
randomization round, each of these blocks are moved to new mem-
ory locations in layout L, 2. Because the adversary does not know
the exact location of element e; in L4, he cannot distinguish
when the element is moved from the set of 32 move operations
that use the same page as the source.® From the adversary’s point
of view, after two re-randomization rounds, the element can re-
side in 32 pages with high probability. After four re-randomization

%Qur implementation randomizes 8 blocks at once which makes tracing even more
difficult for the adversary.

92

rounds, the adversary must track 323 = 32, 768 re-randomization
moves. Although some of the moves may write to the same target
pages, the tracking tree covers all 1,024 memory pages in Ly44
with high probability, and thus all memory locations are equally
likely for the adversary. For enclaves with smaller heap size (512
KB), similar effect can be achieved after three rounds. The shortest
re-randomization window we tested in Section 5 lasted 0.37 ms, in
which case the required three (or four) re-randomization rounds
would be performed after 1.1 ms (or 1.5 ms) of enclave execution.
We conclude that enclaves with predictable accesses can leak infor-
mation. If the secret-dependent access happens after the predictable
access and before a sufficient number of re-randomization rounds,
the secret may be leaked to the adversary. By touching additional
memory pages on every re-randomization write, the window can
be reduced to fewer rounds. Alternatively, re-randomization rounds
can be performed more frequently. Both approaches increase run-
time overhead.

7 RELATED WORK

Previous research has proposed various side-channel defenses. In
this section we review them and compare existing defenses to
DR.SGX.

ORAM and Oblivious Execution. Oblivious RAM (ORAM) [28-
30, 60, 69, 76] refers to schemes that hide the memory access pattern
of a trusted client (e.g., CPU or network client) to an untrusted
and encrypted memory (e.g., DRAM or server) by introducing fake



accesses and shuffling the encrypted memory elements such that the
observable access pattern is independent of the actual access pattern.
Oblivious execution architectures [44, 45, 48] attempt to hide all
observable effects of program execution, including both memory
accesses (code and data) and timing information. Implementing
ORAM for every enclave memory access is extremely expensive.
Obfuscuro [1], a program obfuscation system, implements both
ORAM and oblivious execution, with performance overheads of
83X on average and up to 220X. DR.SGX’s performance overhead
is at least one order of magnitude lower than Obfuscuro.

Sinha [67] proposes a compiler-based tool to protect code written
in their custom language from paging-based side-channel attacks.
In contrast, DR.SGX works with existing code in C/C++ and also
mitigates cache-based side-channel attacks.

Raccoon [59] is a system that provides oblivious data access only
for developer-annotated enclave data, thus reducing the overhead.
Memory accesses are hidden by either using ORAM or by streaming
over the entire data structure. In contrast, DR.SGX does not rely
on developers to identify and annotate data that might leak.

ZeroTrace [62] is an oblivious data structure framework for SGX
that runs on top of a software memory controller. ZeroTrace is
designed to hide memory access to resources outside of an enclave,
e.g., to the hard disk drive. Importantly, it is not designed to make all
memory accesses of an enclave to its own main memory oblivious,
like DR.SGX does. Furthermore, ZeroTrace requires the developer
to use the memory controller interface for all access that should be
protected. DR.SGX does not require similar developer assistance.

Ohrimenko et. al. propose data-oblivious machine learning algo-
rithms [53] and a side-channel resilient MapReduce framework [52]
for SGX. Fuhry et. al. propose a page-fault side-channel secure
database [27]. Such defenses are tailored to specific enclaves and
algorithms, while DR.SGX applies to arbitrary enclaves.

Transactional memory. Some of the known SGX side-channel
attacks interrupt the victim enclave repeatedly [77]. A correspond-
ing defense is to enable the victim enclave to detect interruption
and take counteractive measures, such as stopping its execution.
T-SGX [66] leverages the Intel Transactional Synchronization Ex-
tension (TSX) to detect asynchronous enclave exits, e.g., due to
interrupts of page faults. Déja Vu [17] monitors the execution time
of an enclave to detect a slowdown caused by frequent interrupts.
These defenses do not prevent attacks that work without inter-
rupts [11, 31, 64]. DR.SGX is applicable to such attacks.

Cloak [33] uses TSX to preform atomic memory operations that
hide sensitive memory accesses. Before sensitive memory is ac-
cessed, all cache lines are touched (primed) by the enclave, and thus
the adversary learns nothing about the enclave’s sensitive accesses.
Cloak relies on the developer to annotate sensitive data structures
that should be protected from side-channel attacks and requires
TSX, which is not supported by all SGX processors. DR.SGX does
not require similar developer assistance and works on all SGX pro-
cessors.

Software diversity. Crane et al. [19] propose to apply dynamic
software diversity, an effective countermeasure against code reuse
attacks and reverse engineering, to defend against cache-based side-
channel attacks. The approach is to create multiple copies of code
and choose one of them at the time of execution. We apply this

technique to protect stack data. However, the solution by Crane et
al. is specifically targeting protection of cryptographic algorithms.
In contrast, DR.SGX can protect non-cryptographic enclaves.

Randomization. Address Space Layout Randomization
(ASLR) [57] is a common defensive technique against memory
corruption attacks such as ROP [61]. ASLR hides the locations of
memory regions (code and data) by randomizing their offsets at
load time. More fine-grained solutions randomize code (but not
data) at function [38], block [21, 75], or instruction [34, 56] level.

Such randomization techniques are insufficient as a side-channel
defense for SGX. Offset-based ASLR is not effective since the priv-
ileged attacker is responsible for memory management and thus
learns the “secret” randomized offsets. Code randomization, as im-
plemented in SGX-Shield [65], is not complete [7] and does not
prevent attacks that monitor data accesses [11, 64, 77].

New cache architectures. Cache-based side channels can be ad-
dressed by changes in the cache architecture. The two common
approaches are (i) cache partitioning [23, 24, 55, 74], dividing the
cache into partitions that are not shared between processes, and
(if) cache access obfuscation [22, 37, 40, 46, 74], where the goal
is to obfuscate the obtainable side-channel information, either by
introducing noise or by randomizing the address to cache line map-
ping. Such defenses require hardware changes and are limited to
cache attacks. DR.SGX works on current processors and applies to
additional side-channels (e.g., page faults).

8 DISCUSSION

Fine-grained leaks. Recent works [50, 78] have investigated the
possibility of leaking information through a side-channel with a
granularity smaller than a cache line. However, they are not appli-
cable in our case.

CacheBleed [78] exploits cache bank conflicts to leak fine-grained
information. This attack does not apply to SGX CPUs due to an
updated cache design. We verified this experimentally.

MemJam [50] uses read-after-write false dependencies to intro-
duce latency when a victim program reads data with a specific
page offset. By measuring the run time of the victim program a
high number of times while jamming different page offsets, the
attacker can infer which offsets are read more often by the victim.
This attack can leak information with a four byte granularity, but
requires an extremely high number of runs (50 million runs for an
attack against a simple and deterministic SGX enclave). However,
with DR.SGX, the page offsets of data change between different
runs, making the correlation of timing information for different
runs exponentially more involved. Moreover, the accesses due to
DR.SGX’s own code generate a significant amount of noise, which
complicates the matter further. Finally, the code of DR.SGX itself
was designed to not be vulnerable to MemJam attacks, e.g., by
randomizing the permutation buffer layout (see Section 4.5).

Leakage quantification. Quantification of cache-based informa-
tion leakage has been studied in previous works. For example,
CacheAudit [25] is a well-known static analysis framework that
given an x86 binary and a cache configuration yields an upper

93



bound on the amount of information leakage via cache- and time-
based side-channels. The information leakage is quantified based
on the number of side-channel observations an attacker can obtain.

CacheAudit, and similar existing tools, are not applicable to our
scenario for two main reasons. First, in the model of CacheAudit,
randomly permuted observations contribute to the total number
of observations, even though the attacker may not learn any use-
ful information from such accesses. Second, CacheAudit does not
consider information leakage through other channels, such as page
faults, that can be correlated with cache observations. Therefore,
CacheAudit cannot be used to quantify informations leakage of
DR.SGX.

9 CONCLUSION

In this paper we have proposed semantic-agnostic data randomiza-
tion as a new defensive approach against side-channel attacks on
SGX. We have designed and implemented DR.SGX, which allows to
instrument enclave code such that all data locations in enclave mem-
ory are permuted at cache-line granularity and re-randomized at
runtime. Unlike previous defenses, our solution allows non-expert
developers to harden their enclaves against various data-driven
attack strategies with an adjustable security-performance trade-off.

ACKNOWLEDGMENTS

The authors would like to thank Urs Miiller for his feedback in the
initial discussions that led to this work.

This work has been supported by the German Research Founda-
tion (DFG) as part of projects HWSec, P3 and S2 within the CRC
1119 CROSSING, by the German Federal Ministry of Education
and Research (BMBF) and the Hessen State Ministry for Higher
Education, Research and the Arts (HMWK) within CRISP, by BMBF
within the projects iBlockchain and CloudProtect, and by the Intel
Collaborative Research Institute for Collaborative Autonomous &
Resilient Systems (ICRI-CARS).

REFERENCES

[1] Adil Ahmad, Byunggill Joe, Yuan Xiao, Yingian Zhang, Insik Shin, and Byoungy-
oung Lee. 2019. Obfuscuro: A Commodity Obfuscation Engine on Intel SGX. In
Network and Distributed System Security Symposium.

[2] ARM Limited. 2009. ARM Security Technology — Building a Secure System using
TrustZone Technology. http://infocenter.arm.com/help/topic/com.arm.doc.prd29-
genc-009492¢/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf.

[3] Lejla Batina, Patrick Jauernig, Nele Mentens, A-R Sadeghi, and Emmanuel Stapf.
2019. In Hardware We Trust: Gains and Pains of Hardware-assisted Security.
(2019).

[4] Andrew Baumann, Marcus Peinado, and Galen Hunt. 2014. Shielding Applications
from an Untrusted Cloud with Haven.

[5] Mihir Bellare, Phillip Rogaway, and Terence Spies. 2010. The FFX Mode of Opera-
tion for Format-Preserving Encryption. Technical Report.

[6] David Bigelow, Thomas Hobson, Robert Rudd, William Streilein, and Hamed
Okhravi. 2015. Timely rerandomization for mitigating memory disclosures. In
ACM SIGSAC Conference on Computer and Communications Security. ACM.

[7] Andrea Biondo, Mauro Conti, Lucas Davi, Tommaso Frassetto, and Ahmad-Reza
Sadeghi. 2018. The Guard’s Dilemma: Efficient Code-Reuse Attacks Against Intel
SGX. In 27th USENIX Security Symposium.

[8] Ferdinand Brasser, Lucas Davi, Abhijitt Dhavlle, Tommaso Frassetto, Sai

Manoj Pudukotai Dinakarrao, Setareh Rafatirad, Ahmad-Reza Sadeghi, Avesta

Sasan, Hossein Sayadi, Shaza Zeitouni, et al. 2018. Advances and throwbacks

in hardware-assisted security: special session. In Proceedings of the International

Conference on Compilers, Architecture and Synthesis for Embedded Systems. IEEE

Press, 15.

Ferdinand Brasser, Tommaso Frassetto, Korbinian Riedhammer, Ahmad-Reza

Sadeghi, Thomas Schneider, and Christian Weinert. 2018. VoiceGuard: Secure

)

94

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]
[29]

[30]

[31]

[32]

[33]

and Private Speech Processing. In Interspeech 2018. International Speech Com-
munication Association (ISCA), 1303-1307.

Ferdinand Brasser, David Gens, Patrick Jauernig, Ahmad-Reza Sadeghi, and
Emmanuel Stapf. 2019. SANCTUARY: ARMing TrustZone with User-space
Enclaves. In 26th Annual Network & Distributed System Security Symposium
(NDSS).

Ferdinand Brasser, Urs Miiller, Alexandra Dmitrienko, Kari Kostiainen, Srdjan
Capkun, and Ahmad-Reza Sadeghi. 2017. Software Grand Exposure: SGX Cache
Attacks Are Practical. In USENIX Workshop on Offensive Technologies.

E. Brickell, G. Graunke, and J.-P. Seifert. 2006. Mitigating cache/timing attacks in
AES and RSA software implementations. In RSA Conference 2006, session DEV-203.
BYTE Magazine and Uwe F. Mayer. 1995-2011. BYTEmark benchmark (nbench),
port to Linux. Original address http://www.tux.org/~mayer/linux/bmark.html,
now archived at https://web.archive.org/web/20151215162836/http://www.tux.
org/~mayer/linux/bmark.html.

Luigi Catuogno, Alexandra Dmitrienko, Konrad Eriksson, Dirk Kuhlmann, Gian-
luca Ramunno, Ahmad-Reza Sadeghi, Steffen Schulz, Matthias Schunter, Marcel
Winandy, and Jing Zhan. 2009. Trusted Virtual Domains — Design, Implementa-
tion and Lessons Learned. In International Conference on Trusted Systems.
Swarup Chandra, Vishal Karande, Zhigiang Lin, Latifur Khan, Murat Kantar-
cioglu, and Bhavani Thuraisingham. 2017. Securing Data Analytics on SGX with
Randomization. In European Symposium on Research in Computer Security.
Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yingian Zhang, Zhigiang Lin, and
Ten H. Lai. 2018. SgxPectre Attacks: Stealing Intel Secrets from SGX Enclaves
via Speculative Execution. arXiv:arXiv:1802.09085v3

Sanchuan Chen, Xiaokuan Zhang, Michael K. Reiter, and Yinqian Zhang. 2017.
Detecting Privileged Side-Channel Attacks in Shielded Execution with Déja Vu.
In ACM Symposium on Information, Computer and Communications Security.
Victor Costan and Srinivas Devadas. 2016. Intel SGX Explained. Technical Report.
Cryptology ePrint Archive. Report 2016/086. https://eprint.iacr.org/2016/086.pdf.
Stephen Crane, Andrei Homescu, Stefan Brunthaler, Per Larsen, and Michael
Franz. 2015. Thwarting Cache Side-Channel Attacks Through Dynamic Software
Diversity. In Network and Distributed System Security Symposium.

Poulami Das, Lisa Eckey, Tommaso Frassetto, David Gens, Kristina Hostakova,
Patrick Jauernig, Sebastian Faust, and Ahmad-Reza Sadeghi. 2019. FastKitten:
Practical Smart Contracts on Bitcoin. In 28th USENIX Security Symposium.
Lucas Davi, Alexandra Dmitrienko, Stefan Niirnberger, and Ahmad-Reza Sadeghi.
2013. Gadge Me If You Can - Secure and Efficient Ad-hoc Instruction-Level
Randomization for x86 and ARM. In ACM Symposium on Information, Computer
and Communications Security.

Ghada Dessouky, Tommaso Frassetto, and Ahmad-Reza Sadeghi. 2020. HybCache:
Hybrid Side-Channel-Resilient Caches for Trusted Execution Environments. In
29th USENIX Security Symposium.

Leonid Domnitser, Aamer Jaleel, Jason Loew, Nael Abu-Ghazaleh, and Dmitry
Ponomarev. 2012. Non-monopolizable caches: Low-complexity mitigation of
cache side channel attacks. ACM Transactions on Architecture and Code Optimiza-
tion (TACO) 8, 4 (2012).

Leonid Domnitser, Aamer Jaleel, Jason Loew, Nael Abu-Ghazaleh, and Dmitry
Ponomarev. 2012. Non-monopolizable Caches: Low-complexity Mitigation of
Cache Side Channel Attacks. ACM Transactions on Architecture and Code Opti-
mization (2012). https://doi.org/10.1145/2086696.2086714

Goran Doychev, Boris Kopf, Laurent Mauborgne, and Jan Reineke. 2015. Cacheau-
dit: A tool for the static analysis of cache side channels. ACM Transactions on
Information and System Security (TISSEC) 18, 1 (2015).

Tommaso Frassetto, David Gens, Christopher Liebchen, and Ahmad-Reza Sadeghi.
2017. JITGuard: Hardening Just-in-time Compilers with SGX. In 24th ACM
Conference on Computer and Communications Security (CCS).

Benny Fuhry, Raad Bahmani, Ferdinand Brasser, Florian Hahn, Florian Ker-
schbaum, and Ahmad-Reza Sadeghi. 2017. HardIDX: Practical and Secure Index
with SGX. In Conference on Data and Applications Security and Privacy (DBSec).
Oded Goldreich. 1987. Towards a theory of software protection and simulation
by oblivious RAMs. In Annual ACM Symposium on Theory of Computing. ACM.
Oded Goldreich and Rafail Ostrovsky. 1996. Software Protection and Simulation
on Oblivious RAMs. J. ACM (1996).

Michael T Goodrich, Michael Mitzenmacher, Olga Ohrimenko, and Roberto
Tamassia. 2012. Privacy-preserving group data access via stateless oblivious RAM
simulation. In Annual ACM-SIAM symposium on Discrete Algorithms. Society for
Industrial and Applied Mathematics.

Johannes Gotzfried, Moritz Eckert, Sebastian Schinzel, and Tilo Miiller. 2017.
Cache Attacks on Intel SGX. In European Workshop on Systems Security.

Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. 2018. Transla-
tion Leak-aside Buffer: Defeating Cache Side-channel Protections with TLB At-
tacks. In 27th USENIX Security Symposium. https://www.usenix.org/conference/
usenixsecurity18/presentation/gras

Daniel Gruss, Julian Lettner, Felix Schuster, Olya Ohrimenko, Istvan Haller, and
Manuel Costa. 2017. Strong and Efficient Cache Side-Channel Protection using
Hardware Transactional Memory. In 26th USENIX Security Symposium.



[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]
[46]

[47]
[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56

[57]

[58]

[59]

Jason D. Hiser, Anh Nguyen-Tuong, Michele Co, Matthew Hall, and Jack W.
Davidson. 2012. ILR: Where’d My Gadgets Go?. In IEEE Symposium on Security
and Privacy.

Intel. 2015. Intel Software Guard Extensions. Tutorial slides. https://software.
intel.com/sites/default/files/332680-002.pdf. Reference Number: 332680-002,
revision 1.1.

Intel. 2016. Intel 64 and IA-32 Architectures Software Developer’s Man-
ual. http://www.intel.com/content/www/us/en/architecture-and-technology/64-
ia-32-architectures- software-developer-manual-325462.html.

G. Keramidas, A. Antonopoulos, D. N. Serpanos, and S. Kaxiras. 2008. Non
deterministic caches: A simple and effective defense against side channel attacks.
Design Automation for Embedded Systems (2008).

Chongkyung Kil, Jinsuk Jun, Christopher Bookholt, Jun Xu, and Peng Ning. 2006.
Address Space Layout Permutation (ASLP): Towards Fine-Grained Randomization
of Commodity Software. In Annual Computer Security Applications Conference.
Paul Kocher, Jann Horn, Anders Fogh, , Daniel Genkin, Daniel Gruss, Werner
Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. 2019. Spectre Attacks: Exploiting Speculative Execu-
tion. In 40th IEEE Symposium on Security and Privacy (S&P’19).

Jingfei Kong, Onur Aciicmez, Jean-Pierre Seifert, and Huiyang Zhou. 2009.
Hardware-software integrated approaches to defend against software cache-
based side channel attacks. In IEEE International Symposium on High Performance
Computer Architecture. IEEE.

Kubilay Ahmet Kiigiik, Andrew Paverd, Andrew Martin, N. Asokan, Andrew
Simpson, and Robin Ankele. 2016. Exploring the Use of Intel SGX for Secure
Many-Party Applications.

Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim, and Marcus
Peinado. 2017. Inferring Fine-grained Control Flow Inside SGX Enclaves with
Branch Shadowing. In USENIX Security Symposium.

Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval
Yarom, and Mike Hamburg. 2018. Meltdown: Reading Kernel Memory from User
Space. In 27th USENIX Security Symposium (USENIX Security 18).

Chang Liu, Austin Harris, Martin Maas, Michael Hicks, Mohit Tiwari, and Elaine
Shi. 2015. Ghostrider: A hardware-software system for memory trace oblivious
computation. ACM SIGARCH Computer Architecture News 43, 1 (2015).

Chang Liu, Michael Hicks, and Elaine Shi. 2013. Memory trace oblivious program
execution. In IEEE Computer Security Foundations Symposium.

Fangfei Liu and Ruby B. Lee. 2014. Random Fill Cache Architecture. In 47th
Annual IEEE/ACM International Symposium on Microarchitecture.

LLVM Foundation. 2019. The LLVM Compiler Infrastructure. https://llvm.org.
Martin Maas, Eric Love, Emil Stefanov, Mohit Tiwari, Elaine Shi, Krste Asanovic,
John Kubiatowicz, and Dawn Song. 2013. Phantom: Practical oblivious com-
putation in a secure processor. In ACM SIGSAC Conference on Computer and
Communications Security.

Jonathan M. McCune, Yanlin Li, Ning Qu, Zongwei Zhou, Anupam Datta, Vir-
gil Gligor, and Adrian Perrig. 2010. TrustVisor: Efficient TCB Reduction and
Attestation. In IEEE Symposium on Security and Privacy.

Ahmad Moghimi, Thomas Eisenbarth, and Berk Sunar. 2018. MemJam: A False
Dependency Attack Against Constant-Time Crypto Implementations in SGX. In
Topics in Cryptology — CT-RSA 2018, Nigel P. Smart (Ed.). Springer International
Publishing.

Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth. 2017. CacheZoom: How
SGX Amplifies The Power of Cache Attacks. Technical Report. arXiv:1703.06986
[cs.CR]. https://arxiv.org/abs/1703.06986.

Olga Ohrimenko, Manuel Costa, Cédric Fournet, Christos Gkantsidis, Markulf
Kohlweiss, and Divya Sharma. 2015. Observing and preventing leakage in MapRe-
duce. In ACM SIGSAC Conference on Computer and Communications Security.
ACM.

Olga Ohrimenko, Felix Schuster, Cedric Fournet, Aasthaa Meht, Sebastian
Nowozin, Kapil Vaswani, and Manuel Costa. 2016. Oblivious Multi-Party Machine
Learning on Trusted Processors. In USENIX Security Symposium.

Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache Attacks and Counter-
measures: The Case of AES. In The Cryptographers’ Track at the RSA Conference
on Topics in Cryptology.

D. Page. 2005. Partitioned Cache Architecture as a Side-Channel Defence Mecha-
nism. In IACR Eprint archive.

Vasilis Pappas, Michalis Polychronakis, and Angelos D. Keromytis. 2012. Smash-
ing the Gadgets: Hindering Return-Oriented Programming Using In-Place Code
Randomization. In IEEE Symposium on Security and Privacy.

PaX Team. [n.d.]. PaX address space layout randomization (ASLR). http://pax.
grsecurity.net/docs/aslr.txt.

Bernardo Portela, Manuel Barbosa, Guillaume Scerri, Bogdan Warinschi, Raad
Bahmani, Ferdinand Brasser, and Ahmad-Reza Sadeghi. 2017. Secure Multiparty
Computation from SGX. In Financial Cryptography and Data Security.

Ashay Rane, Calvin Lin, and Mohit Tiwari. 2015. Raccoon: Closing Digital
Side-channels Through Obfuscated Execution. In USENIX Security Symposium.
http://dl.acm.org/citation.cfm?id=2831143.2831171

[60]

[61]

[62]

[63]

[64

[65]

[66]

(67

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76

[77

[78]

Ling Ren, Christopher W Fletcher, Albert Kwon, Emil Stefanov, Elaine Shi, Marten
Van Dijk, and Srinivas Devadas. 2015. Constants Count: Practical Improvements
to Oblivious RAM. In USENIX Security Symposium.

Ryan Roemer, Erik Buchanan, Hovav Shacham, and Stefan Savage. 2012. Return-
oriented programming: Systems, languages, and applications. ACM Transactions
on Information and System Security 15, 1 (2012).

Sajin Sasy, Sergey Gorbunov, and Christopher Fletcher. 2017. ZeroTrace: Obliv-
ious Memory Primitives from Intel SGX. IACR Cryptology ‘ Archive Report
2017/549 (2017).

Felix Schuster, Manuel Costa, Cedric Fournet, Christos Gkantsidis, Marcus
Peinado, Gloria Mainar-Ruiz, and Mark Russinovich. 2015. VC3: Trustworthy
Data Analytics in the Cloud Using SGX.

Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice, and Stefan
Mangard. 2017. Malware Guard Extension: Using SGX to Conceal Cache Attacks.
In Detection of Intrusions and Malware, and Vulnerability Assessment.

Jaebaek Seo, Byounyoung Lee, Seongmin Kim, Ming-Wei Shih, Insik Shin, Dongsu
Han, and Taesoo Kim. 2017. SGX-Shield: Enabling Address Space Layout Random-
ization for SGX Programs. In Network and Distributed System Security Symposium.
Ming-Wei Shih, Sangho Lee, Taesoo Kim, and Marcus Peinado. 2017. T-SGX:
Eradicating Controlled-Channel Attacks Against Enclave Programs. In Network
and Distributed System Security Symposium.

Rohit Sinha, Sriram Rajamani, and Sanjit A. Seshia. 2017. A compiler and verifier
for page access oblivious computation. In Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering - ESEC/FSE 2017. ACM Press.
https://doi.org/10.1145/3106237.3106248

Julian Stecklina and Thomas Prescher. 2018. LazyFP: Leaking FPU Register
State using Microarchitectural Side-Channels. CoRR abs/1806.07480 (2018).
arXiv:1806.07480 http://arxiv.org/abs/1806.07480

Emil Stefanov, Marten Van Dijk, Elaine Shi, Christopher Fletcher, Ling Ren,
Xiangyao Yu, and Srinivas Devadas. 2013. Path ORAM: an extremely simple
oblivious RAM protocol. In ACM SIGSAC Conference on Computer and Communi-
cations Security.

Chia-che Tsai, Donald E. Porter, and Mona Vij. 2017. Graphene-SGX: A Practical
Library OS for Unmodified Applications on SGX. In USENIX Annual Technical
Conference.

Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank
Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx.
2018. Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Transient
Out-of-Order Execution. In 27th USENIX Security Symposium.

Jo Van Bulck, Nico Weichbrodt, Riidiger Kapitza, Frank Piessens, and Raoul
Strackx. 2017. Telling Your Secrets without Page Faults: Stealthy Page Table-
Based Attacks on Enclaved Execution. In 26th USENIX Security Symposium.
Stephan van Schaik, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi. 2018.
Malicious Management Unit: Why Stopping Cache Attacks in Software is Harder
Than You Think. In 27th USENIX Security Symposium. https://www.usenix.org/
conference/usenixsecurity18/presentation/van-schaik

Zhenghong Wang and Ruby B. Lee. 2008. A Novel Cache Architecture with En-
hanced Performance and Security. In Annual IEEE/ACM International Symposium
on Microarchitecture.

Richard Wartell, Vishwath Mohan, Kevin W. Hamlen, and Zhiqiang Lin. 2012.
Binary Stirring: Self-randomizing Instruction Addresses of Legacy x86 Binary
Code. In ACM SIGSAC Conference on Computer and Communications Security.
Peter Williams and Radu Sion. 2012. Round-optimal access privacy on outsourced
storage. In ACM Conference on Computer and Communications Security.
Yuanzhong Xu, Weidong Cui, and Marcus Peinado. 2015. Controlled-Channel
Attacks: Deterministic Side Channels for Untrusted Operating Systems. In IEEE
Symposium on Security and Privacy.

Y. Yarom, D. Genkin, and N. Heninger. 2016. CacheBleed: A timing attack on
OpenSSL constant time RSA. Technical Report. Cryptology ePrint Archive. Report
2016/224. https://eprint.iacr.org/2016/224.pdf.

95






FASTKITTEN:
Practical Smart Contracts on Bitcoin

Lisa Eckey”
Patrick Jauernig®

Poulami Das”
Kristina Hostdkova"

Tommaso Frassetto®

David Gens$

Sebastian Faust” Ahmad-Reza Sadeghi®

Technische Universitdit Darmstadt, Germany
* first.last@cs.tu-darmstadt.de

§ first.last@trust.tu-darmstadt.de

Abstract

Smart contracts are envisioned to be one of the killer appli-
cations of decentralized cryptocurrencies. They enable self-
enforcing payments between users depending on complex
program logic. Unfortunately, Bitcoin — the largest and by far
most widely used cryptocurrency — does not offer support for
complex smart contracts. Moreover, simple contracts that can
be executed on Bitcoin are often cumbersome to design and
very costly to execute. In this work we present FASTKITTEN,
a practical framework for executing arbitrarily complex smart
contracts at low costs over decentralized cryptocurrencies
which are designed to only support simple transactions. To
this end, FASTKITTEN leverages the power of trusted comput-
ing environments (TEEs), in which contracts are run off-chain
to enable efficient contract execution at low cost. We formally
prove that FASTKITTEN satisfies strong security properties
when all but one party are malicious. Finally, we report on
a prototype implementation which supports arbitrary con-
tracts through a scripting engine, and evaluate performance
through benchmarking a provably fair online poker game. Our
implementation illustrates that FASTKITTEN is practical for
complex multi-round applications with a very small latency.
Combining these features, FASTKITTEN is the first truly prac-
tical framework for complex smart contract execution over
Bitcoin.

1 Introduction

Starting with their invention in 2008, decentralized cryptocur-
rencies such as Bitcoin [51] currently receive broad attention
both from academia and industry. Since the rise of Bitcoin,
countless new cryptocurrencies have been launched to address
some of the shortcomings of Nakamoto’s original proposal.
Examples include Zerocash [47] which improves on Bitcoin’s
limited anonymity, and Ethereum [16] which offers complex
smart contract support. Despite these developments, Bitcoin
still remains by far the most popular and intensively stud-
ied cryptocurrency, with its current market capitalization of
$109 billion which accounts for more than 50% of the total
cryptocurrency market size [2].

A particular important shortcoming of Bitcoin is its limited
support for so-called smart contracts. Smart contracts are
(partially) self-enforcing protocols that allow emitting trans-
actions based on complex program logic. Smart contracts
enable countless novel applications in, e.g., the financial in-
dustry or for the Internet of Things, and are often quoted as
a glimpse into our future [9]. The most prominent cryptocur-
rency that currently allows to run complex smart contracts is
Ethereum [16], which has been designed to support Turing
complete smart contracts. While Ethereum is continuously
gaining popularity, integrating contracts directly into a cryp-
tocurrency has several downsides as frequently mentioned
by the advocates of Bitcoin. First, designing large-scale se-
cure distributed systems is highly complex, and increasing
complexity even further by adding support for complex smart
contracts also increases the potential for introducing bugs.
Second, in Ethereum, smart contracts are directly integrated
into the consensus mechanics of the cryptocurrency, which re-
quires in particular that all nodes of the decentralized system
execute all contracts. This makes execution of contracts very
costly and limits the number and complexity of applications
that can eventually be run over such a system. Finally, many
applications for smart contracts require confidentiality, which
is currently not supported by Ethereum.

There has been significant research effort in addressing these
challenges individually. Some works aim to extend the func-
tionality of Bitcoin by showing how to build contracts over
Bitcoin by using multiparty computation (MPC) [37,38,40],
others focus on achieving privacy-preserving contracts (e.g.,
Hawk [35], Ekiden [19]) by combining existing cryptocur-
rencies with trusted execution environments (TEEs). How-
ever, as we elaborate in Section 2, all of these solutions suf-
fer from various deficiencies: they cannot be integrated into
existing cryptocurrencies such as Bitcoin, are highly ineffi-
cient (e.g., they use heavy cryptographic techniques such as
non-interactive zero-knowledge proofs or general MPC), do
not support money mechanics, or have significant financial
costs due to complex transactions and high collateral (money
blocked by the parties in MPC-based solutions).

97



In this work, we propose FASTKITTEN, a novel system that
leverages trusted execution environments (TEEs) utilizing
well-established cryptocurrencies, such as Bitcoin, to offer
full support for arbitrary complex smart contracts. We empha-
size that FASTKITTEN does not only address the challenges
discussed above, but is also highly efficient. It can be easily
integrated into existing cryptocurrencies and hence is ready to
use today. FASTKITTEN achieves these goals by using a TEE
to isolate the contract execution inside an enclave, shielding
it from potentially malicious users. The main challenges of
this solution, such as for instance how to load and validate
blockchain data inside the enclave or how to prevent denial
of service attacks, are discussed in Section 3.1. Moving the
contract execution into the secure enclave guarantees correct
and private evaluation of the smart contract even if it is not
running on the blockchain and verified by the decentralized
network. This approach circumvents the efficiency shortcom-
ing of cryptocurrencies like Ethereum, where contracts have
to be executed in parallel by thousands of users. Most related
to our work is the recently introduced Ekiden system [19],
which uses a TEE to support execution of multiparty compu-
tations but does support contracts that handle coins. While
Ekiden is efficient for single round contracts, it is not de-
signed for complex reactive multi-round contracts, and their
off-chain execution. The latter is one of the main goals of
FASTKITTEN.

We summarize our main goals and contributions below.

* Smart Contracts for Bitcoin: We support arbitrary
multi-round smart contracts executed amongst any fi-
nite number of participants, where our system can be run
on top of any cryptocurrency with only limited script-
ing functionality. We emphasize that Bitcoin is only one
example over which our system can be deployed today;
even cryptocurrencies that are simpler than Bitcoin can
be used for FASTKITTEN.
Efficient Off-Chain Execution: Our protocol is de-
signed to keep the vast majority of program execution
off-chain in the standard case if all parties follow the
protocol. Since our system incentivizes honest behavior
for most practical use cases, FASTKITTEN can thus run
in real-time at low costs.

» Formal Security Analysis: We formally analyze the
security of FASTKITTEN in a strong adversarial model.
We prove that either the contract is executed correctly,
or all honest parties get their money back that they have
initially invested into the contract, while a malicious
party loses its coins. Additionally, the service provider
who runs the TEE is provably guaranteed to not lose
money if he behaves honestly.

e Implementation and benchmarking: We provide an
in-depth analysis of FASTKITTEN’s performance and
costs and evaluate our framework implementation with
respect to several system parameters by offering bench-
marks on real-world use cases. Concretely, we show that

98

online poker can run with an overall match latency of
45ms and costs per player are in order of magnitude of
one USD, which demonstrates FASTKITTEN’s practical-
ity.
We emphasize that FASTKITTEN requires only a single TEE
which can be owned either by one of the participants or by an
external service provider which we call the operator. In addi-
tion, smart contracts running in the FASTKITTEN execution
framework support private state and secure inputs, and thus,
offer even more powerful contracts than Ethereum. Finally,
we stress that FASTKITTEN can support contracts that may
span over multiple different cryptocurrencies where each par-
ticipant may use her favorite currency for the money handled
by the contract.

2 Related Work

Support for execution of arbitrary complex smart contracts
over decentralized cryptocurrencies was first proposed and
implemented by the Ethereum cryptocurrency. As pointed
out in Section 1, running smart contracts over decentralized
cryptocurrencies results in significant overheads due to the
replicated execution of the contract. While there are currently
huge research efforts aiming at reducing these overheads
(for instance, via second layer solutions such as state chan-
nels [24,49], Arbitrum [34] or Plasma [55], outsourcing of
computation [58], or permissioned blockchains [46]), these so-
lutions work only over cryptocurrencies with support complex
smart contracts, e.g. over Ethereum. Another line of work,
which includes Hawk [36] and the “Ring of Gyges” [33], is
addressing the shortcoming that Ethereum smart contracts
cannot keep private state. However, also these solutions are
based on complex smart contracts and hence cannot be inte-
grated into popular legacy cryptocurrencies such as Bitcoin,
which is the main goal of FASTKITTEN.

In this section we will focus on related work, which con-
siders smart contract execution on Bitcoin. We separately
discuss multiparty computation based smart contracts and so-
lutions using a TEE. We provide a more detailed discussion on
how the above-mentioned Ethereum based solutions compare
to FASTKITTEN in Appendix A. Additionally, in Section 8
we discuss some exemplary contract use cases and compare
their execution inside FASTKITTEN with the execution over
Ethereum.

Multiparty computation for smart contracts An interest-
ing direction to realize complex contracts over Bitcoin is to
use so-called multiparty computation with penalties [38—40].
Similar to FASTKITTEN these works allow secure m-round
contract execution but they rely on the claim-or-refund func-
tionality [39]. Such a functionality can be instantiated over
Bitcoin and hence these works illustrate feasibility of generic
contracts over Bitcoin. Unfortunately, solutions supporting
generic contracts require complex (and expensive) Bitcoin
transactions and high collateral locked by the parties which
makes them impractical for most use-cases. Concretely, in



Minimal Generic

A h Pri
pproac #TX Collateral Contracts rivacy
Ethereum contracts ~ O(m) O(n) v X
MPC [38-40] o)  O(n’m) v v/
Ekiden [19] O(m) no support for money v
FASTKITTEN o(1) O(n) v v

Table 1: Selected solutions for contract execution over Bitcoin
and their comparison to Ethereum smart contracts. Above, n
denotes the number of parties and m is the number of reactive
execution rounds.

all generic n-party contract solutions we are aware of, each
party needs to lock O(nm) coins, which overall results in
O(n’m) of locked collateral. In contrast, the total collateral
in FASTKITTEN is O(n), see column “Collateral” in Table 1.
It has been shown that for specific applications, concretely, a
multi-party lottery, significant improvements in the required
collateral are possible when using MPC-based solutions [48].
This however comes at the cost of an inefficient setup phase,
communication complexity of order O(2"), and O(logn) on-
chain transactions for the execution phase. Let us stress that
the approach used in [48] cannot be applied to generic con-
tracts.

Overall, while MPC-based contracts are an interesting direc-
tion for further research, we emphasize that these systems are
currently far from providing a truly practical general-purpose
platform for contract execution over Bitcoin—which is the
main goal of FASTKITTEN.

TEEs for blockchains There has recently been a large
body of work on using TEEs to improve certain features
of blockchains [10,43,59, 63,64]. A prominent example is
Teechain [43], which enables off-chain payment channel sys-
tems over Bitcoin. Most of these prior works do not use the
TEE for smart contract execution. Some notable exceptions
include Hawk [36] and the “Ring of Gyges” [33], who pro-
pose privacy preserving off-chain contracts execution, but, as
already mentioned, do not work over Bitcoin.

Probably most related to our work is Ekiden [19], which
proposes a system for private off-chain smart contract ex-
ecution using TEEs. While Ekiden focuses on solutions
over Ethereum, it does not require a powerful scripting lan-
guage of the underlying blockchain technology — just like
FASTKITTEN. Despite the conceptual similarities of Ekiden
and FASTKITTEN, the goals of these systems are orthogonal.
Ekiden aims at moving heavy smart contract execution off
the chain in order to reduce the cost of executing complex
contract functions. In contrast, FASTKITTEN focuses on effi-
cient off-chain execution of multi-round contracts between a
set of parties. Importantly, we require our system to natively
handle coins of the underlying blockchain. A joint goal of
both systems is to provide state privacy of the contracts.
Ekiden considers clients (contract parties) and computing

nodes which have a similar task as FASTKITTEN’s TEE oper-
ator since they also execute contracts inside a TEE. In contrast
to FASTKITTEN, Ekiden sends the encryption of the resulting
contract state to the blockchain after every function call. If
a client requests another function call, a selected computing
node takes the state from the blockchain, decrypts it inside
its enclave and performs the contract execution. This implies
that reactive multi-round contracts are very costly even in the
standard case when all participating parties are honest (c.f.
column “Minimal # TX” in Table 1).

Ekiden relies on multiple TEEs and guarantees service avail-
ability as long as at least one TEE is controlled by an honest
computing node. We note in Section 9.2 that fault tolerance
can be integrated into FASTKITTEN in a straightforward way.
Additionally, Ekiden aims to achieve forward secrecy even if a
small fraction of TEEs gets corrupted via, e.g., a side-channel
attack. Their strategy is to secret-share a long-term secret key
between the TEEs and use it to generate a short-term secret
key every “epoch”. Hence, an attacker learning the short-term
key can only decrypt state from the current epoch. While
side-channel attacks are out of scope of this work, note that
FASTKITTEN can achieve forward secrecy of states in case
of side-channel attacks using the same mechanism as Ekiden.
An important part of the FASTKITTEN construction is the
fair distribution of coins through the enclave. Ekiden does
neither model nor discuss the handling of coins. It is not
straightforward to add this feature to their model since the
contract state is encrypted and hence the money cannot be
unlocked automatically on-chain.

3 Design

FASTKITTEN allows a set of n users Py, ..., P, to execute an
arbitrary complex smart contract over a decentralized cryp-
tocurrency that only supports very simple scripts. Concretely,
FASTKITTEN considers cryptocurrencies that, in addition to
supporting simple transactions between users, offer so-called
time-locked transactions. A transaction is time-locked if it
is only processed and integrated into the blockchain after a
certain amount of time has passed. Moreover, FASTKITTEN
requires that transactions contain space for storing arbitrary
raw data. We emphasize that these are very mild require-
ments on the underlying cryptocurrency that, for instance,
are satisfied by the most prominent cryptocurrency Bitcoin.'
FASTKITTEN leverages these properties together with the
power of trusted execution environments to provide an effi-
cient general-purpose smart contract execution platform.

As discussed in the introduction, a contract is a program
that handles coins according to some—possibly complex—
program logic. In this work, we consider n-party contracts,
which are run among a group of parties Py,...,P, and have
the following structure. During the initialization phase, the
contract receives coins from the parties and some initial in-

IBitcoin transactions can store up to 97 KB of data [44]; multiple trans-
actions can be used for bigger payloads.

99



puts. Next, it runs for m reactive rounds, where in each round
the contract can receive additional inputs from the parties P;,
and produces an output. Finally, after the m-th round is com-
pleted the contract pays out the coins to the parties according
to its final state and terminates.

A key feature of FASTKITTEN is very low execution cost and
high performance compared to contract execution over cryp-
tocurrencies such as Ethereum. This is achieved by not exe-
cuting contracts by all parties maintaining the cryptocurrency
but instead running the contract within a TEE which could,
e.g., be owned and operated by a single service provider which
we call the operator Q. In the standard case when all parties
are honest, FASTKITTEN runs the entire contract off-chain
within the enclave and only needs to touch the blockchain dur-
ing contract initialization and finalization. More concretely,
during initialization, the parties transfer their coins to the en-
clave by time-locking coins with deposit transactions, while
at the end of finalization the enclave produces transactions
that transfer coins back to the users according to the results of
the contract execution. These transactions are called output
transactions and can be published by the users of the system
to receive their coins.

3.1 Design Challenges of FASTKITTEN

Leveraging TEEs for building a general-purpose contract
execution platform requires us to resolve the following main
challenges.

Protection against malicious operator. The operator runs
the TEE and hence controls its interaction with the environ-
ment (e.g., with other parties or the blockchain). Thus, the
operator can abort the execution of the TEE, delay and change
inputs, or drop any ingoing or outgoing message. To protect
honest users from such an operator, the enclave program run-
ning inside the TEE must identify such malicious behavior
and punish the operator. In particular, we require that even
if the TEE execution is aborted, all parties must be able to
get their coins refunded eventually. To achieve this, we let the
operator create a so-called penalty transaction: the penalty
transaction time-locks coins of the operator, which in case of
misbehavior can be used to refund the users and punish the
operator.

Note that designing such a scheme for punishment is highly
non-trivial. Consider a situation where party P; was supposed
to send a message x to the contract. From the point of view
of the enclave that runs the contract, it is not clear whether
the operator was behaving maliciously and did not forward
a message to the enclave, or, e.g., party P; did not send the
required message to the operator. To resolve this conflict,
we leverage a challenge-response mechanism carried out via
the blockchain. We emphasize that this challenge-response
mechanism is only required when parties are malicious, and
typically will not be executed often due to the high financial
costs for an adversary.

100

Verification of blockchain evidence. To ensure that a ma-
licious operator cannot make up false blockchain evidence,
we need to design a secure blockchain validation algorithm
which can efficiently be executed inside a TEE. We achieve
this by simplifying the verification process typically carried
out by full blockchain nodes by using a checkpoint block to
serve as the initial starting point for verification. This drasti-
cally reduces blockchain verification time in comparison to
verification starting from the genesis block. To further speed
up the transaction verification, we only validate correctness of
block headers. Finally, when the TEE needs to verify whether
a certain transaction was integrated into a block, we set a mini-
mum number of blocks that must confirm a transaction as part
of the security parameter within our protocol. This guarantees
that faking a valid-looking chain is computationally infea-
sible for a malicious operator. Finally, it is computationally
infeasible for a malicious operator to load a fake (but valid-
looking) chain into the enclave before the penalty transaction
is published on the blockchain.

Minimizing blockchain interaction. Since blockchain in-
teractions are expensive, FASTKITTEN only requires interac-
tion with the blockchain in the initialization and finalization
phases if all parties follow the protocol. As already discussed
above, however, in case of malicious behavior FASTKITTEN
may require additional interaction with the blockchain for con-
flict resolution. This is required to allow the TEE to attribute
malicious behavior either to the operator or to some other
participant P; that provides input to the contract. We achieve
this through a novel challenge-response protocol, where the
TEE will ask the operator to challenge P; via the blockchain.
The operator can then either deliver a proof that he challenged
P; via the blockchain but did not receive a response, in which
case P; will get punished; or the operator receives P;’s input
and can continue with the protocol.

Of course, this challenge-response protocol adds to the worst-
case execution time of our system, and additionally will result
in fees for blockchain interaction. To address the latter, our
protocol ensures that both parties involved in the challenge-
response mechanism have to split the fees resulting from
blockchain interaction equally.? This incentivizes honest be-
havior if parties aim to maximize their personal profits.
Preventing denial of service attacks. Complex smart con-
tracts may take a very long time to complete, and in the
worst case not terminate. Hence, a malicious party may carry
out a denial-of-service attack against the contract execution
platform, where the platform is asked to execute a contract
that never halts. It is well known that determining whether a
program terminates is undecidable. Hence, general-purpose
contract platforms, such as Ethereum, mitigate this risk by
letting users pay via fees for every step of the contract execu-
tion. This effectively limits the amount of computation that

2In the cryptocurrency community, this is often referred to as griefing
factor 1 : 1, meaning that for every coin spent by the honest users on fees the
adversary is required to also spend one coin.



GOperator

@ < [3) @ FasTKiTTEN Execution Platform

[ 3

@S V Enclave ! Host Process
Initial
Config

Blockchain

\Scripting Engine

Participant
Connection

>
I Smart éﬁ

1
1
1
1
1
1
1
1
1
I~ Contract | |
1

ETEE

Figure 1: Architecture of the FASTKITTEN Smart Contract
Execution Platform. Dashed arrows indicate interaction with
the blockchain and non-dashed arrows depict communication
between parties.

can be carried out by the contract. Since FASTKITTEN allows
multiple parties to provide input to the contract in the same
round, it might be impossible to decide which party (parties)
caused the denial of service and should pay the fee. To this
end, FASTKITTEN protects against such denial-of-service at-
tacks using a time-out mechanism. As all users of the system
(including the operator) have to agree on the contract to be ex-
ecuted, we assume that this agreement includes a limit on the
maximum amount of execution steps that can be performed
inside the enclave per one execution round. See Section 6.5
for more details.

3.2 Architecture and Protocol

To enable secure off-chain contract execution, our architecture
builds on existing TEEs, which are widely available through
commercial off-the-shelf hardware. In particular, our archi-
tecture can be implemented using Intel’s Software Guard
Extensions (SGX) [4,29,45] which is a prominent TEE in-
stantiation built into most recent Intel processors. SGX in-
corporates a set of new instructions to create, control and
communicate with enclaves. While enclaves are part of a
legacy host process, SGX enforces strict isolation of compu-
tation and memory between enclave and host process on the
hardware level. Another prominent instantiation of the TEE
concept is ARM TrustZone [6], which provides similar func-
tionality for mobile devices. We note that only the operator Q
is required to own TEE-enabled hardware.

As depicted in Figure 1, our FASTKITTEN Execution Facility
is run by the operator Q and consists of a host process and an
enclave. The untrusted host process takes care of setting up
the enclave with an initial config, handles the participant con-
nections, and blockchain communication over the network.
While this means that Q has complete control over these parts,
the influence of a malicious operator on a running enclave
is limited: he can interrupt enclave execution, but not tam-

per with it. Further, the enclave will sign and hash all code
and data as part of its attestation towards parties, so they
can verify correctness of the setup before placing deposits.
To support arbitrary contract functionality, FASTKITTEN in-
cludes a scripting engine inside the enclave and several helper
libraries, such as the Crypto library to generate and verify
transactions, and an Interface library to pass data between
host process and enclave. The individual contracts are loaded
into the FASTKITTEN enclave during the initialization of
our protocol by the underlying host process and participants
can verify that contracts are loaded correctly. Our protocol
then proceeds in three phases, which we call setup phase,
round computation, and finalization phase. Figure 1 depicts
the architecture of the FASTKITTEN framework.

During the setup phase (Steps @-@) the contract is loaded
into the enclave. Using the TEE'’s attestation functionality,
all parties Py,...,P, can verify that this step was completed
correctly. Then the operator and all parties block their coins
for the contract execution. If any party aborts in this phase, the
money is refunded to all parties that deposited money and the
protocol stops. Otherwise, all parties receive a time-locked
penalty transaction, needed in case Q aborts the protocol.
Afterwards, the round computation phase (Step @) starts, in
which Q sends the previous round’s output to all parties. If
a party P; receives such an output, which is correctly signed
by the enclave, it signs and sends the input for the following
round to Q. If all parties behave honestly, O will forward
the received round inputs to the enclave, which computes the
outputs for the next round. In case that the enclave does not
receive an input from party P; the enclave needs to determine
whether P; failed to send its input or if Q behaved maliciously
(e.g., by dropping the message). Therefore, the enclave will
punish Q unless it can prove, that it sent the last round output
to P; but did not receive a response. This proof is generated via
the blockchain: Q publicly challenges P; to respond with the
input for the next round by posting the output of the previous
round to the blockchain. As soon as this challenge transaction
is confirmed, P; needs to respond publicly by spending the
coins of the challenge transaction and include its input for
the next round. If P; responds, Q can extract P;’s input and
continue with the protocol execution. If P; did not respond, O
forwards the respective blocks as a transcript to the enclave,
to prove that P; misbehaved.? So, while a malicious party (or
the operator) can force this on-chain challenge-response pro-
cedure without direct punishment, posting these transactions
will also act against its own financial interests by extending
the time lock of its own coins and leading to transaction fees.
Nevertheless, such malicious behavior cannot prevent the fair
termination of our protocol.

The last phase of the protocol is the payout phase (Step @). In

3 Alternatively, we could allow the operator to spend the challenge transac-
tion after a timeout has passed. While this would result in easier verification
for the TEE, the operator would need to publish an additional transaction,
increasing both fees and the overall time for the challenge-response phase.

101



this phase the enclave returns the output transaction generated
by the Crypto library. This transaction distributes the coins
according to the terminated contract. In case of a protocol
abort, the coins initially put by the users will be refunded to
all honest parties. If any party was caught cheating, this party
will not receive back its coins. This means the money will
stay in control of the enclave and will never be spent.

4 Adversary Model

The FASTKITTEN protocol is executed n parties Pi,...,P,
and an operator Q (who owns the TEE) with the goal of exe-
cuting a smart contract C. FASTKITTEN’s design depends on
a TEE to ensure its confidentiality and integrity. Our design
is TEE-agnostic, even if our implementation is based on Intel
SGX. Recent research showed that the security and privacy
guarantees of SGX can be affected by memory-corruption
vulnerabilities [11], architectural [13] and micro-architectural
side-channel attacks [60]. For the operator, we assume that Q
has full control over the machine and consequently can exe-
cute arbitrary code with supervisor privileges. While memory
corruption vulnerabilities can exist in the enclave code, a
malicious operator must exploit such vulnerabilities through
the standard interface between the host process and the en-
clave. For the enclave code, we assume a common code-
reuse defense such as control-flow integrity (CFI) [3, 15],
or fine-grained code randomization [23, 42] to be in place
and active. Architectural side-channel attacks, e.g., based on
caches, can expose access patterns [13] from SGX enclaves
(and therefore our FASTKITTEN prototype). However, this
prompted the community to develop a number of software
mitigations [12, 18,27,56,57] and new hardware-based so-
lutions [22, 28, 52]. Microarchitectural side-channel attacks
like Foreshadow [60] can extract plaintext data and effec-
tively undermine the attestation process FASTKITTEN relies
on, leaking secrets and enabling the enclave to run a differ-
ent application than agreed on by the parties; however, the
vulnerability enabling Foreshadow was already patched by
Intel [32]. Since existing defenses already target SGX vul-
nerabilities and since FASTKITTEN’s design is TEE agnostic
(i.e., it can also be implemented using ARM TrustZone or
next-generation TEEs), we consider mitigating side-channel
leakage as an orthogonal problem and out of scope for this
paper.

For our protocol we consider a byzantine adversary [41],
which means that corrupted parties can behave arbitrarily.
In particular, this includes aborting the execution, dropping
messages, and changing their inputs and outputs even if it
means that they will lose money. FASTKITTEN is secure even
if n parties are corrupt (including the two cases where only
the operator is honest, and only one party is honest but the
operator is corrupt). We show that no honest party will lose
coins, a corrupt party will be penalized and that no adversary
can tamper with the result of the contract execution. While
we prove security in this very strong adversarial model, we

102

additionally observe that incentive-driven parties (i.e., parties
that aim at maximizing their financial profits) will behave
honestly, which significantly boosts efficiency of our scheme.
We stress that security of FASTKITTEN relies on the security
of the underlying blockchain. We require that the underlying
blockchain systems satisfies three security properties: /ive-
ness, consistency and immutability [26]. Liveness means that
valid transactions are guaranteed to be included within the
next & blocks. Consistency guarantees that eventually all users
have the same view on the current state of the blockchain
(i.e., the transactions processed and their order). In addition,
blockchains also are immutable, which means that once trans-
actions end up in the blockchain they cannot be reverted. Most
blockchain based cryptocurrencies guarantee consistency and
immutability only after some time has passed, where time
is measured by so-called confirmations. A block b; is con-
firmed k-times if there exists a valid chain extending b; with
k further blocks. Once block b; has been sufficiently often
confirmed, we can assume that the transactions in b; cannot
be reverted and all honest parties agree on an order of the
chain (bg,by,by, . ..,b;). For most practical purposes k can be
a small constant, i.e., in Bitcoin it is generally believed that
for k = 6 a block can be assumed final.*

5 The FASTKITTEN Protocol

In this section we give a more detailed description of our pro-
tocol, which includes the specification of the protocol run by
Q and honest parties Py, ..., P,, all transactions and a descrip-
tion of the enclave program FASTKITTEN. The interaction
between Q, P; and the blockchain is depicted in Figure 2. We
first describe the interactions with the blockchain and TEE.

5.1 Modeling the Blockchain

We will introduce some basic concepts of cryptocurrencies
that are relevant for our work before we describe our high-
level design. Cryptocurrencies are built using blockchains—a
distributed data structure that is maintained by special parties
called miners. The blockchain is comprised as a chain of
blocks (bg,b1,b2,...) that store the transactions of the system.
The miners create new blocks by verifying new transactions
and comprising them into new blocks that extend the tail of
the chain. New blocks are created within some period of time
t, where, for instance, in Bitcoin a new valid block is created
every 10 minutes on average.

In cryptocurrencies users are identified by addresses, where an
address is represented by a public key. To send coins from one
address to another, most cryptocurrencies rely on transactions.
If a user A with address pk, wants to send x coins to user B
with address pkp, she creates a transaction tx which states
that x coins from address pk, are transferred to pkg. Such a

4We notice that in blockchain-based cryptocurrencies there is no guaran-
teed finality, and even for very large values of k blocks can be reverted in
principle. We emphasize however that even for small values of k reverting
blocks becomes impossible in practice very quickly.



transaction tx is represented by the following tuple:
tx := (tx.Input, tx.Output, tx. Time, tx.Data),

where tx.Input refers to a previously unspent transaction,
tx.Output denotes the address to which tx.Value are going
to be transferred to. Note that a transaction tx is unspent if
it is not referred to by any other transaction in its Input field.
Further, tx. Time € N, which denotes the block counter after
which this transaction will be included by miners, i.e., tx can
be integrated into blocks b;,b;4 1, ..., where i = tx. Time. Fi-
nally, tx.Data € {0,1}* is a data field that can store arbitrary
raw data. Similar to [5], we will often represent transactions
by tables as shown exemplary in the table below, where the
first row of the table gives the name of the transaction.

Transaction tx
tx.Input:  Coins from unspent input transaction
tx.Output:  Coins to receiver address
tx.Time:  Some timelock (optional)
tx.Data:  Some data (optional)

Notice that a transaction tx only becomes valid if it is signed
with the corresponding secret key of the output address from
tx.Input. We emphasize that the properties described above
are very mild and are for instance achieved by the most promi-
nent cryptocurrency Bitcoin.

In order to model interaction with the cryptocurrency, we use
a simplified blockchain functionality BC, which maintains a
continuously growing chain of blocks. Internally it stores a
block counter ¢ which starts initially with O and is increased on
average every ¢ minutes. Every time the counter is increased,
a new block will be created and all parties are notified. To
address the uncertainty of the block creation duration we give
the adversary control over the exact time when the counter is
increased but it must not deviate more than A € [ — 1] seconds
from . Whenever any party publishes a valid transaction, it is
guaranteed to be included in any of the next d blocks.
Parties can interact with the blockchain functionality BC us-
ing the following commands.

» BC.post(tx): If the transaction tx is valid (i.e., all inputs
refer to unspent transactions assigned to creator of tx
and the sum of all output coins is not larger than the sum
of all input coins) then tx is stored in any of the blocks
{betts--sbeyst

» BC.getAll(i): If i < ¢, this function returns the latest
block count ¢ — 1 and a list of blocks that extend b;:
b= (bit1,...,b)

» BC.getlLast(): The function getlLast can be called by
any party of the protocol and returns the last (finished)
block and its counter: (c,b,).

For every cryptocurrency there must exist a validation algo-
rithm for validating consistency of the blocks and transactions

therein, which we model using the function Extends. It takes
as input, a chain of blocks b and a checkpoint block b, and
outputs 1 if b= (bep+1,...,bep+i) is a valid chain of blocks
extending b, and otherwise it outputs 0. In Section 6 we
give more details on the validation algorithm, and how this
function is implemented for the Bitcoin system. Recall, that
we assume an adversary which cannot compute a chain of
blocks of length k by itself (c.f. Section 4). This guarantees
that he cannot produce a false chain such that this function
outputs 1. To make the position of some transaction tx inside
a chain of blocks explicit, we write £ := Pos(b, tx) when the
transaction is part of the ¢-th block of b. If the transaction is
in none of the blocks, the function returns oo. For more details
on the transaction and block verification we refer the reader
to [7,26,51].

5.2 Modeling the TEE

In order to model the functionality of a TEE, we follow the
work of Pass et. al. [54]. We explain here only briefly the
simplified version of the TEE functionality whose formal
definition can be found in [54, Fig. 1]. On initialization, the
TEE generates a pair of signing keys (mpk, msk) which we
call master public key and master secret key of the TEE. The
TEE functionality has two enclave operations: install and
resume. The operation TEE.install takes as input a program
p which is then stored under an enclave identifier eid. The
program stored inside an enclave can be executed via the
second enclave operation TEE.resume which takes as input
an enclave identifier eid, a function f and the function input in.
The output of TEE.resume is the output out of the program
execution and a quote g over the tuple (eid,p,out). In the
protocol description we abstract from the details how the
users verify the quote that is generated through the enclave
attestation. Since we only consider one instance E of the
specific program p, we will simplify the resume command
[out, o] := TEE.resume(eid, f,in) and write’:

[out, o] := E f(in)

For every attestable TEE there must exist a function
vrfyQuote(mpk,p,out, 9) which on input of a correct quote o
outputs 1, if and only if out was outputted by an enclave with
master public key mpk and which indeed loaded p. Again,
we assume that the adversary cannot forge a quote such that
the function vrfyQuote() outputs 1. For more information on
how this verification of the attestation is done in practice we
refer the reader to [54].

5.3 Detailed Protocol Description

As explained in Section 3, our protocol TpastkirTen proceeds
in three phases. During the setup phase the contract is in-
stalled in the enclave, attested, and all parties deposit their

5Since we only need the quote of the first activation of E, we will omit
this parameter from there on.

103



Party PEC(C,S;) Party QP¢THE(1%)

InitEnclave

: (cp, bep) := BC.getlast()

: Let mpk be the public key of the enclave
Frk = TEE,instaII(pFK(C, P, K, bcp))
: [(pk1,0), 0] := Erk.genKeys()

: BC.post(txq)

: wait until txg is confirmed k times

: (71, b) := BC.getAll(cp)

Cp:i=T1

: [(tXW 0)7 ] = EFKQdep(b)

: Send (mpk, pk,0,txp, 0) to P;

: goto LoadDepositP

Initialize

1: (cp, bep) := BC.getLast()
2: Send (P, C,bep) to Q

VerfyEnclave

—_

= O © 00~ U R W N

—

1: if (mpk, pk,0,txp, 0) Was not received or
vrfyQuote(mpk, prk (C, P, K, bep), (Pk 1, 0), 0)

# 1 or Vrfy(mpk; pk,,0) # 1 then
2: Terminate and output setupFail tx ; LoadDepositP
3: else BC.post(tx;) 1 . .
b 1: wait until block 7
""""" 7 2: (12,b) := BC.getAll(71)
1t 3: [(outc,0),] :== Erk.Pdep(b)
4: if outc = txout then
5: goto Finalize
6: else
outc, o 7: Send (outc, o) to P;
Roundlnput; = 8: goto (ExecuteTEE;)
1: if Vrfy(pk ;; (outc,j);0) # 1 then abort rliL
2: else Send (in; ;, Sign(sk;;in; ;)) to in;j,c
else Send (in; ;, Sign(ski; inij;)) to Q { 7029 | ExecuteTEE;
1: for each i € [n] do
WhenChallenged ‘b 1 2 if Vrfy(pk,;ini, s;)) = 1 then
ST 3 add (in j), si)) to Z
L _(67 be) = BC.getLast() ¢ Xchal 4 else BC.post(txchal (i, 1, outc))
2: if txchai (4, j, outc,or) € be then 4 .
3. o = Sign(ski; i) 5: if |Z| = n then goto step 14
4 BC.post(txresp(i,j: inij, o) Dresp ) 6: wait until txcpa is confirmed 2k + J times
’ 1t 7: (73, b) := BC.getAll(72)
8: for each tx.s, € b do
. if Vrfy(pk,;in, si)) = 1 then
WhenFinal oo b 1 add (in(j),si)) to Z
1: (¢,be) := BC.getlLast() : if |Z| < n then
2: if txout(J,d, outc) € by then 1+ [txout, -] := Erk errorProof (b)
3: Terminate and output outc goto Finalize()
> : [(outc,0), ] == Erk.round(j,7)
. if outc = txout then
WhenTimeout ny goto Finalize()
1: (£,b) := BC.getLast() T 1  else
: (6, by) == .
2: if £ = T{na then tx, Send (outc, o) to P;
3 BC.ploast(txp) — goto (ExecuteTEE), 1
4: (Tﬁna|,b) = BCAgetA||(T1) <.__3‘;‘L’l_)___ 1
5: if 3¢ € [n] such that tx; ¢ b then —
6: Terminate and output setupFail s Finalize
7 else
. 1: BC.post(txou
8: Terminate and output abort g Do post(tXou)

Figure 2: Protocol Trastkirren. Direct black arrows indicate communication between the parties and Q, gray dashed arrows
indicate reading from the blockchain and gray double arrows posting on the blockchain.

104



coins. Then the round execution follows for all m rounds of
the interactive contract. When the contract execution aborts
or finishes, the protocol enters the finalize phase. We now ex-
plain all phases and the detailed protocol steps for all involved
parties and the operator Q in depth. The detailed interactions
as well as the subprocedure of the parties and the operator
are displayed in Figure 2, Figure 3 describes the FASTKIT-
TEN enclave program ppg. Overall the protocol requires six
different type of transactions.

Setup phase. In the setup phase, each party P; first runs
Initialize to generate its key pairs and gets the latest block b,
which serves as a genesis block or checkpoint of the protocol.
Then P; sends the set of parties P, the b., and the contract
C to the operator Q. Upon receiving the initial values from
all n parties, Q runs the subprocedure InitEnclave to initialize
the trusted execution of the enclave program prk (P,C, K, bcp)
where K is the security parameter of the scheme. This security
parameter X also determines the values for the timeout period
t and the confirmation constant k. This ensures that all parties
and the TEE agree on these fixed values. Once ppk is installed
in the enclave, it generates key pairs for the protocol execution
and in particular the blockchain public key pk;. Now, Q can
make its deposit transaction txp which assigns g coins to the
enclave public key.

Q’s Deposit Transaction txq

tx.Input:  Some unspent tx from Q

tx.Output:  Assign g coins to pky

Let block counter T; denote the time when this transaction
has been included and confirmed in the blockchain. Q loads
all blocks from cp to T; as evidence to the enclave. If this evi-
dence is correct, the execution of ppk function Qdep outputs
a penalty transaction txp, stating that after timeout Ty, (after
which the protocol must be terminated) the g coins of Q’s

deposit transaction txp are payed out to the parties Py, ..., P,.
Penalty Transaction tx,
tx.Input:  Q’s Deposit Transaction txg
For all i € [n]:
tx.Output;:  Assign ¢; coins to P;
tx.Time:  Spendable after T4
0 sends the penalty transaction to all parties Py,...,P,, who

run subprocedure VerfyEnclave. This transaction is used
whenever the protocol does not finish before the final time-
out Tfpnal, which equals (3 4 2m) x (8 + k) blocks after the
protocol start (recall, that we use & to bound the time until
some transaction is guaranteed to be included and it will be

SFor simplicity we omit here, that the enclave might need multiple key
pairs for signing transactions and messages.

confirmed after k blocks).” Only if participant P; received
this penalty transaction from Q during the setup and verified
that the program pgk (P,C, X, by) is installed in the enclave,
it creates and publishes its deposit transaction.

P;’s Deposit Transaction tx;

tx.Input:  Some unspent tx from P;

tx.Output:  Assign ¢; coins to TEE

After time T < 71, Q executes LoadDepositP and again pro-
vides the block evidence to the enclave execution of ppk. If all
parties published the deposit transactions, the first-round exe-
cution starts. Otherwise the enclave proceeds to the finalize
phase and outputs a refund transaction tx,(7,¢) that returns
the deposit back to honest users and Q, where T C P is the
set of all parties that submitted the deposit transaction until
time T,. Note, that the internal state of the contract execution
is maintained by the prk program inside the enclave. This
guarantees that the contract is not executed on outdated state.

Round computation phase. When the protocol arrives to
the round computation phase, Q sends the authenticated out-
put of the enclave to every party P; and requests input for the
next round. Each party P; runs the round algorithm. Internally
it verifies whether the input request came from the enclave by
verifying the attached signature. Then it generates and signs
its round input and sends it to Q. While P; waits for the next
round, Q verifies all received inputs and their signatures in
the ExecuteTEE subprocedure. If all the parties P; responded
with correctly signed round inputs, Q triggers the execution
of the contract in the enclave. Let us emphasize that in this
simplified description of our protocol we do not focus on the
privacy aspect and hence we omit that all round inputs to the
contract could be encrypted with the public key of the enclave.
In this case the trusted enclave execution needs to decrypt
them before it evaluates the contract on them. See Section 9.3
for more details.

Note that the operator Q may be malicious and refrain from
requesting a party P; for the input to a round computation.
Instead Q may pretend that it actually did not receive any
input from the party P;. On the other hand, one can imagine
a scenario where Q is behaving honestly but the party P; is
dishonest and does not send the correctly signed round input
to Q. Note, that the program pgk cannot distinguish between
these two cases without additional information. We will next
show how an honest Q can generate a proof to attribute the
malicious behavior to P;. First, Q has to publish a challenge
transaction txcha Which includes the signed output of the
previous step. txcha spends a very small amount u of coins
from Q and assign them to party P;3.

"The definition of Tfna guarantees that even if the execution is delayed
in every round, an honest operator will not be penalized.

8Cryptocurrencies like Bitcoin allow transactions with very small denom-
inations (e.g. fractions of cents).

105



Challenge Transaction txcp, (i, j, outc,07)
tx.Data:  Store i, j,outc,01
tx.Input:  Some unspent tx from Q
tx.Output:  Assign u coins to P;

Once txcpqr 1s included in the blockchain, party P; can read
the correct output information from the transaction. The party
should respond with tXesp, Which includes its signed round
input. txresp spends the txcpa and assigns the u coins back
to Q. The action of P; is depicted via the WhenChallenged
subprocedure.

Response Transaction txyesp (i, j, in,6;)
tx.Data:  Store i, j,in,o;
tx.Input:  Challenge Transaction txchai (i, j, state)
tx.Output:  Assign u coins to Q

If some party does not send the response after it was chal-
lenged, Q can prove this misbehavior to the FASTKITTEN pro-
gram, by providing the blockchain evidence of the challenge-
response transcript. If the enclave program identifies a cheat-
ing party, it proceeds to the finalize phase. Otherwise, if all
the parties’ inputs were received with authentication (possibly
after challenge-response phase), Q instructs the enclave to
execute the contract on the accumulated input.

The result of the contract execution is the output outc, the
updated state state, and a coin distribution denoted by d. If
state equals L, the contract execution is finished, and the pro-
tocol proceeds to the finalize phase. Otherwise, FASTKITTEN
internally stores the state and outputs outc to Q who sends
this output to all parties and waits for next round inputs.
Finalize phase. In the finalize phase, the enclave publishes
a final output transaction tx,,: Which distributes the coins
back to all honest parties. It is parameterized by a set of par-
ties to receive coins 7, a final coin distribution € and a final
state outc. The transaction txout(J,€,outc), spends all de-
posit transactions tx; for all i € J and Q’s deposit transaction
txgp. It includes the outc in the data field and assigns g coins
back to QO and e; coins to party P;, for every i € J. Let us note
that J = [n] implies correct protocol termination. If 7 # [n],
then some party misbehaved and the protocol failed. Either
a party did not make a deposit in the setup phase (signaled
by outc = setupFail) or some party aborted in the round com-
putation phase (signaled by outc = abort). In both cases all
other parties get their initial deposits back. Note, that if a party
Pj is caught cheating by the TEE, it will lose its deposit.

Q now has to publish this transaction to get his coins before
time Tfina and by that also distributes coins and reveals outc
to honest parties. The participants need to constantly monitor
the blockchain for transactions which challenge them or indi-
cate final output. When they see a challenge transaction they
respond as described above. If they see an output transaction

106

Output Transaction txout (7, €, outc)
tx.Data:  Store out¢
tx.Input:  Deposit Transactions txg, {tx;}ics
tx.Output;: g coinsto Q
Forallie J:
tx.Output;1: e; coinsto P;

they know the protocol execution ended and output the final
contract output according to subroutine WhenFinal.

6 Execution Facility

As shown in Figure 1, we leverage a TEE for smart contract ex-
ecution. For our prototype, we implemented FASTKITTEN for
the Bitcoin blockchain using Intel SGX as a TEE. We chose
Python as our scripting engine because it’s memory safe, very
well known, and widely available. To interact with the Bitcoin
blockchain data in the enclave, we implemented our Crypto
library using the open-source breadwallet-core [14], a simpli-
fied payment verification (SPV) library for Bitcoin used by the
Breadwallet mobile wallet app. To abstract from SGX’s pe-
culiarities, and thus simplify smart contract development, we
use the Graphene Library OS [17] (referred to as “Graphene’
in the rest of the paper) as a basis. Graphene enables running
arbitrary native Linux binaries in SGX enclaves while provid-
ing compatible library interfaces for networking and other OS
services. Note that the design of the FASTKITTEN protocol
does not require a trusted time source in the TEE.

]

6.1 The Enclave Program FASTKITTEN

An execution facility in the sense of FASTKITTEN must pro-
vide a set of abstract functionalities like key generation, trans-
action generation, smart contract execution, and error han-
dling, all executed inside the enclave. This set of procedures
is described in detail in Figure 3. We implemented each of
the procedures using equivalent Python scripts. It is parame-
terized by the set of parties P, the contract C which internally
specifies the expected deposits ¢, a security parameter K and a
genesis block bc,. This does not need to be the actual genesis
block of the underlying blockchain but it can be a later block
which is used as a checkpoint. All parties must verify that this
block is indeed a block of the blockchain. The security pa-
rameter X also determines the waiting time k which is needed
for the verification of the blocks.

6.2 Blockchain Verification

Blockchain communication is important for the setup and
the finalization phase in the protocol. Thanks to the integrity
properties of blockchains, a secure connection between the
enclave and the blockchain is not needed if verification of
received data can be done in the enclave. As it is not practical
to download a complete copy of the blockchain to the enclave,
we only concentrate on transactions caused by FASTKITTEN



The execution of pgx is initialized with the secret key msk,
the set of parties (where every P; € P is identified by its key
pki), a contract C, a security parameter k (which also defines
the waiting period ¢ and confirm period k) and a checkpoint
bcp. Internally it stores the state of the contract state and the
status flag s initially set to state = 0 and s = genKeys.

procedure genKeys()
1: if s # genKeys then abort
2: (skr,pkr) := Gen(1¥)
3: 5:= Qdep
4: return pkr,Sign(msk; pky)

procedure Qdep(b)
1: if 5 # Qdep or Extends(bcp,b) # 1 or Pos(b,txp) >
|b| —k then abort
2: s:=Pdep
3: bcp := last block of b
4: return txp

> Else, output penalty transaction

procedure Pdep(b)
1: if s # Pdep or Extends(bcp,b) # 1 then abort
2: setJ =0
3: forie P do
4: 4; := Pos(b, tx;)

5 if (; <dand ¢; < |b| —kthenaddito J
6: if 7 = [n] then

7: s :=round

8 bep :=b.last

9 return 0, Sign(skr;0,bcp)
10: else

11: s 1= terminated

12: return txout (7, ¢, setupFail)

procedure round(/, (in1,61) ..., (in,,0,))
1: if s # round; or forany i € [n] : Vrfy(pk;;in;,s;) # 1 then
abort

2: (outc, state’ ,d) := C(state, in)

3: if state’ # | then

4 s:=round;|

5: state := state'

6: return outc, Sign(skr; (outc, j))
7: else

8: s = terminated

9: return txout ([1],d, outc)

procedure errorProof, (j,b)
1: if s # round; or Extends(bcp,b) # 1 then abort

2: Let 6 := Sign(skr; (outc, j))

3 J =n]

4: fori € P do

5: if Pos(b, txchal (i, j,outc,0)) < |b| — 8 — k then
6: if Pos(b, txresp (i, j, in,6) > [b| — k then
7 delete i from J

8: else if Vrfy(pk;;in,c) # 1 then

9: delete i from J
10: s = terminated

11: if J # [n] then
12: return txout (7, ¢,abort)

Figure 3: FASTKITTEN enclave program pgk (P, C, K, bep)

protocol invocation. Thus, it is sufficient to verify that these
transactions are part of a valid block—without downloading
entire blocks, which can be done efficiently using simplified
payment verification (SPV). However, SPV libraries can only
prove that a transaction is part of a block on the blockchain,
but they cannot prove that a transaction is not part of any
block. As required by the challenge-response case, we added
an alternative verification mode that fully downloads every
block that could potentially contain the transaction and checks
whether its present in any of those blocks.

6.3 Participant Communication

To place the deposits and receive them later, as well for send-
ing input, communication between participants (including the
Operator Q) is needed in the off-chain phase. We secure this
communication using TLS sockets provided by Python. This
transparently encrypts participants’ communication, and thus
ensures input integrity and confidentiality of parties’ messages
towards the operator.

6.4 Enclave Setup

In the FASTKITTEN prototype, we leverage Intel SGX as a
TEE. SGX is a TEE included in recent Intel CPUs which
introduces the concept of isolated hardware enclaves that can
be created and managed using new CPU instructions. SGX
enclaves are even shielded from the operating system; only
the CPU is trusted. To support smart contract execution in
these enclaves we provide a run-time environment based on
Graphene, which replaces the Intel SDK in both the enclave
and the host process. This allows Graphene to transparently
provide services from the untrusted OS (and check the in-
tegrity of the results). To protect the enclave application from
the host process, a manifest has to be provided at enclave
initialization. The manifest includes interfaces, services, and
respective integrity checksums, e.g., hashes of files the en-
clave requires. Accesses to these files will be checked against
hashes in the manifest to guarantee integrity.

As depicted by Figure 3, the Execution Facility incorporates
a set of functionalities. For key derivation (genKeys) we lever-
age the rdrand instruction to get high-entropy randomness
inside of the enclave. After checking that rxg (Qdep) is in the
blockchain, the derived private key skr is used to generate
the penalty transaction tx,, using our Crypto library. tx,, is
distributed to the other participants over a TLS connection.
Other participants can generate their deposit transactions tx;
(Pdep) using a regular wallet. This concludes the setup phase,
and the smart contract gets executed (round).

The Graphene run-time environment enables FASTKITTEN to
support arbitrary Linux binaries, thus, can be used to imple-
ment smart contracts. However, instead of allowing binaries,
we use a scripting engine based on a Python interpreter in our
proof-of-concept implementation. First, this makes develop-
ment easier for contract developers, as they are not always
familiar with lower-level programming languages, and second,

107



this makes smart contracts less prone to memory corruption
vulnerabilities. Two use cases we implemented are presented
and evaluated in Section 8.

6.5 Denial of Service Protection

The protocol as described in Section 5 assumes instantaneous
contract execution meaning that the execution of a contract
inside a TEE takes no time. For most practical contracts, this
simplifying assumption is reasonable since executing a sim-
ple contract function inside a TEE is much faster than the
network/blockchain delay. However, this is not true when con-
sidering arbitrary contracts which might potentially contain
endless loops. Moreover, the halting problem states that it is
impossible to predict if a certain algorithm will halt within
a certain number of steps. A simple protection against end-
less loops and denial-of-service attacks, is letting the enclave
monitor the execution of the smart contract and terminate ex-
ecution if the number of execution steps exceeds a predefined
limit. If the contract execution is aborted due to an execution
timeout, the enclave signs an outputs transaction tx,,; which
returns deposited coins back to parties and to the operator.

7 Security

In this section we present the underlying security considera-
tions of FASTKITTEN.

7.1 Protocol Security

Due to limited space, we present our novel model in the ex-
tended version of this paper, where we also formally state
the security properties, the formal statement of the theorem
as well as the proof. Here we will only briefly explain the
security properties.

In order to guarantee security for the protocol, we require
three security properties: correctness, fairness and operator
balance security.

Intuitively, correctness states that in case all parties behave
honestly (including the operator), every party P; € P outputs
the correct result and earns the amount of coins she is sup-
posed to get according to the correct contract execution. The
fairness property guarantees that if at least one party P; € P is
honest, then (i) either the protocol correctly completes an exe-
cution of the contract or (ii) all honest parties output setupFail
and stay financially neutral or (iii) all honest parties output
abort, stay financially neutral, and at least one corrupt party
must have been financially punished. Finally, the operator bal-
ance security property says that in case the operator behaves
honestly, he cannot lose money.

Theorem 1 (Informal statement). The protocol TpastKiTTEN
as defined in Section 5 satisfies correctness, fairness and
operator balance security property.

The most challenging part of the proof is the fairness prop-
erty. We need to show how honest parties reach consensus
on the result of the execution and prove that coins are always

108

distributed between parties according to this result (even if
malicious parties collude with the operator). In order to prove
the operator balance security, we show that an honest operator
has always enough time to publish a valid output transac-
tion which pays him back his deposit, before the time-locked
penalty transaction can be posted on the blockchain.

Incentive-driven adversary If we consider only incentive-
driven adversaries, then statement (iii) of the fairness property
is never true. Hence, if the setup phase completes successfully,
then the result of the protocol is a correct contract execution.
This follows directly from the fact, that when the protocol
aborts the misbehaving parties lose coins. By definition of
incentive-driven parties, losing coins is against their interest.
This is why the only possible outcome of the protocol is
correct execution of the contract. Moreover, when we consider
fees for positing transaction on the blockchain, parties are
additionally incentivized to prevent the challenge-response
transactions. These additional incentives enforce fast and
protocol compliant behavior of the parties.

7.2 Architecture Security

The main goal of FASTKITTEN is to enable efficient execution
of general multi-round smart contracts. Hence, we analyze
the security of FASTKITTEN with regards to its system ar-
chitecture and implementation. Possible adversaries can be
malicious participants, a malicious operator, or a combination
of both.

We note that participating clients are only required to send
and receive transactions from the blockchain (e.g., to enter an
execution) and the ability to exchange protocol messages (e.g.,
to play rounds). Hence, client implementations can be based
on a diverse set of entirely different code bases in practice,
possibly using memory-safe languages such as Python, Go, or
Rust. Malicious participants are further limited to interacting
with other parties and the operator through the exchange of
messages as specified within our protocol, and hence, we
focus on the TEE-based execution facility in the following.
A malicious operator could deny execution, however, he is
incentivized to adhere to the protocol or lose money. Thus,
we assume that the goal of a malicious operator is to try
and exploit the execution facility at runtime. Since the opera-
tor already controls the host process, the main target would
be the enclave that executes the contract. Enclaves have a
well-defined interface with the rest of the system, and any
attack has to be launched using this interface. By provid-
ing fake data through this interface, the attacker could try to
exploit a memory-corruption vulnerability in the low-level
enclave code to launch (a) a code-reuse attack, e.g., by ma-
nipulating enclave stack memory, or (b) a data-only attack,
e.g., to leak information about the game state or manipulate
Bitcoin addresses in contracts. As mentioned in Section 4,
for (a) we assume a standard code-reuse defense such as
control-flow integrity [3, 15,50,62,65] or fine-grained code
randomization [21,23,30,42,53,61]. The core functionality of



FASTKITTEN additionally tackles both attack vectors by im-
plementing the main enclave code in Python, which provides
memory-safety features such as implicit bounds checking.
The only parts that are implemented in unsafe languages are
the initialization code of Graphene [17] and the Simple Pay-
ment Verification (SPV) library [14]. FASTKITTEN actually
has no strong dependency on Graphene in principle, it was
mainly used to simplify and speed up prototype implementa-
tion. Finally, SPV represents a standard library used by most
blockchain clients and an adversary that is able to construct
a data-only attack against it would be able to exploit any of
those clients connected to the Bitcoin network using the same
data-only attack.

8 FASTKITTEN Contracts

In this section we take a look at applications and performance
through a number of benchmarks.

8.1 Complexity

The FASTKITTEN protocol consists of setup, round computa-
tion and finalize phases. During the setup phase, each party P;
deposits a constant amount of coins c¢;. The operator needs to
deposit an amount } ¢, ¢; which equals the sum of all other
deposits from P together. To post the deposit transactions tx;s
and txg, a total of n+-1 transactions is necessary.

During the round computation phase, in the optimistic case
FASTKITTEN can operate completely off-chain without any
blockchain interaction. Any user can force that challenge re-
sponse transactions are posted to attribute misbehavior of a
party, in any given round. If this (pessimistic) case occurs,
it can add 2 to another 2n transactions. In the worst case, a
challenge response transaction pair needs to be posted on the
blockchain for every party P; at every round j € [m] leading to
O(nm) blockchain interactions. In finalize phase, FASTKIT-
TEN requires one additional payout transaction tx.,: to settle
money distribution among parties. Scenarios of missing de-
posit at the Setup phase or an abort by a party at the round
computation phase are dealt with by posting the refund trans-
action txo,; and the penalty transaction tx, respectively.
Setup time In the optimistic case (which we have shown is
the standard case when considering incentive-driven parties)
the overall execution of the protocol only requires n 42 trans-
actions on the blockchain. This also indicates at what speed
the protocol can be executed in this case. If all parties agree,
the setup phase can be finished in 2 blockchain rounds and
from that point on the protocol can be played off-chain. In the
next subsection we give some indication how fast this second
part can be achieved. Running the protocol as fast as possible
is in the interest of every party since it shortens the locking
time of the deposits.

8.2 Performance Evaluation

We performed a number of performance measurements to
demonstrate the practicality of FASTKITTEN using our lab

setup, which consists of three machines: First, an SGX-
enabled machine running Ubuntu 16.04.5 LTS with an In-
tel 17-7700 CPU clocked at 3.60GHz and 8GB RAM, where
we installed FASTKITTEN’s contract execution facility to
play the role of the operator’s server. Second, a machine run-
ning Ubuntu 14.04.4 LTS on an Intel i7-6700 CPU clocked
at 3.40GHz with 32GB RAM, which provides unmodified
blockchain nodes in a local test network using Bitcoin Core
version 0.16.1. Third, a laptop machine with macOS 10.13.6
on with Intel i7-4850HQ CPU clocked at 2.30GHz and 16GB
of RAM, which takes the role of the participants in the pro-
tocol. All three machines are connected through a Gigabit
Ethernet LAN. For tests involving the real Bitcoin network
the individual machines are connected through the Internet
using our Internet connection.

Block validation In our experiments, the enclave takes ap-
proximately 5 s to validate one block from the Bitcoin main
network, thus proving that it is capable of validating real
blocks in real time.

Enclave Startup The time to setup an enclave until it is
ready is 2 s, proving that instantiating enclaves on the fly is
feasible.

End-to-end Time Assuming all parties are incentive-driven
and, thus, comply with the protocol, the total time required
by FASTKITTEN is the time of 2 blockchain interactions (see
Section 8.1), plus the computation time (a few milliseconds in
our use cases), plus the time required by the parties to choose
the next inputs.

8.3 Applications

FASTKITTEN allows to run complex smart contracts on top
of cryptocurrencies that would not natively support such con-
tracts, like Bitcoin. But in contrast to Turing-complete con-
tract execution platforms like Ethereum, a secure off-chain
execution such as FASTKITTEN puts some restrictions on the
contracts it can run:

* The number of parties interacting with the contract must
be known at the start of the protocol.

* It must be possible to estimate an upper bound on the
number of rounds and the maximum run time of any
round.

All of these restrictions make FASTKITTEN contracts differ-
ent from smart contracts running on Ethereum itself. The
restrictions above come from the fact that the contract can
be completely (and repeatedly) executed without blockchain
interactions. Other off-chain solutions (like state channels
[20,24,49]) come with similar caveats. By allowing additional
blockchain interaction we could get around those restrictions
but we would lose efficiency in the optimistic case (which is
also similar to state channel constructions).

FASTKITTEN has important features which are supported by
neither Bitcoin nor Ethereum — FASTKITTEN allows private
inputs and batched execution of user inputs. Overall, this leads
to cheaper, faster and private contract execution than what

109



is possible with on-chain contracts in Ethereum. Below, we
highlight these efficiency gains by presenting four concrete
use-cases in which FASTKITTEN outperforms contracts run
over Ethereum or in Ethereum state channels.

Lottery A lottery contract takes coins from every involved
party as input, and randomly selects one winner, who gets all
the coins. The key challenge for such a contract is to fairly
generate randomness to select the winner. In Ethereum or
Bitcoin the randomness is computed from user inputs through
an expensive commit-reveal scheme [48]. In FASTKITTEN,
all parties can immediately send their random inputs to the
enclave which will securely determine a winner. Hence, we
reduce the round complexity from O(logn) [48] to O(1).

Auctions Another interesting use-case for smart contracts
are auctions, where parties place bids on how much they are
willing to pay and the contract determines the final price. In
a straightforward auction, the bids can be public, but more
fair versions, like second bid auctions, require the users not to
learn the other bids before they place their own. The privacy
features of FASTKITTEN can be used to reduce the round
complexity for such auctions which would otherwise require
complex cryptographic protocols [25].

Rock-paper-scissors We implemented the popular two-
party game rock-paper-scissors to show the feasibility of
FASTKITTEN contracts. Again, the privacy features allow
one match to be executed in a single round, which would
have required at least 3 rounds in Ethereum. The pure exe-
cution time in the optimistic case, excluding delays due to
human reaction times, is 12ms for one round (averaged over
100 matches). This demonstrates that off-chain protocols, like
FASTKITTEN, are highly efficient when the same set of par-
ties wants to run complex contracts (like multiple matches of
a game).

Poker We also implemented a Texas Hold’em Poker game,
to prove that multi-party contracts which inherently require
multiple rounds can also be efficiently executed in FASTKIT-
TEN. In our implementation, each player starts with an equal
chip stack and participates in an initial betting round and in
additional rounds after the flop, river, and turn have been dealt
by the enclave. If more than two players remain in the game
after the final bets, the enclave reveals the winner and dis-
tributes the chips in the current pot to the winner. The game
continues until only one player remains. We measured 50
matches between 10 players resulting in an average time of
45ms per match (multiple betting rounds are included in each
match). The run time was measured starting from the moment
all deposits are committed to the blockchain.

Real-world Fees We generated examples of the transac-
tion types used in our protocol for a 10-player poker match.
In Table 2 we estimate the fees required to commit to the
blockchain our transactions, in addition to a typical deposit
transaction. Assuming all parties comply with the protocol,
each party (including Q) must pay between 0.05 USD and

110

Transaction Size (Bytes) Fees (BTC) Fees (USD)
Deposit (typical) 250  0.000007-0.000073 0.05-0.46
Penalty (txp) 504 0.000015-0.000148 0.09-0.93
Challenge (txchal) 293 0.000009-0.000086 0.05-0.54
Response (tXresp) 266  0.000008-0.000078 0.05-0.49
Output (tXout) 1986  0.000058-0.000582 0.36-3.65

Table 2: Estimated fees for a typical deposit transaction and
the FASTKITTEN transactions, using data from CoinMarket-
Cap [2] and BlockCypher [1] retrieved on Nov. 14, 2018.

0.46 USD for the deposit. Additionally, the output transaction
txout requires between 0.36 USD and 3.65 USD in fees.
Other Well-known Contracts Certain well-known con-
tracts like ERC20 token and CryptoKitties inherently need
to be publicly available on the blockchain, since they are ac-
cessed frequently by participants which are not previously
known. In contrast, contracts resembling our examples above,
which rely on private data and where a fixed set of participants
sends a large number of transactions, are highly efficient when
moved off-chain using a system like FASTKITTEN. The na-
ture of off-chain solutions like FASTKITTEN or state channels
requires advance knowledge of the participants. Open con-
tracts like ERC20 and CryptoKitties that require continuous
synchronization with the blockchain and are meant to be pub-
licly accessible would eliminate the advantages of off-chain
solutions.

9 Discussion and Extensions

In order to explain and analyze the FASTKITTEN protocol, we
presented a simplified protocol version which only includes
the building blocks required to guarantee security. Depending
on the use case one might be interested in further properties.
Possible extensions discussed in this section include the op-
tion to pay the operator for his service, protect the operator
against TEE faults, hide the contract output from through a
layer of output encryption and allow cross-currency smart
contracts. In the following, we explain how to achieve these
features and at what cost they can be added to the simplified
protocol.

9.1 Fees for the Operator

The owner of the TEE provides a service to the users who
want to run a smart contract and, naturally, he wants to be
paid for it. In addition to the costs of buying, maintaining
and running the trusted hardware, he also needs to block the
security deposit g for the duration of the protocol. While the
security of FASTKITTEN ensures that he will never lose this
money, he still cannot use it for other purposes. The goal of
the operator-fees is to make both investments attractive for Q.
We assume that the operator will be paid & coins for each
protocol round for each party. Since the maximum number
of rounds m is fixed at the protocol start, Q will receive & x



n x m coins if the protocol succeeds (even if the contract
terminated in less than m rounds). If the operator proves to
the TEE in round x that another party did not respond to the
round challenge, he will only receive a fee for the passed x
number of rounds (namely & X x X n). This pay-per-round
model ensures that the operator does not have any incentive
to end the protocol too early. If the protocol setup does not
succeed or the operator cheats, he will not receive any coins.
The extended protocol with operator fees requires each party
to lock ¢; +m x & coins and the operator needs to level this
investment with gc; +m X & coins.

9.2 Fault Tolerance

In order to ensure that the execution of the smart contract
can proceed even in the presence of software or hardware
faults, the enclave can save a snapshot of the current state in
an encrypted format, e.g., after every round of inputs. This
encrypted state would be sent to the operator and stored on
redundant storage. If the enclave fails, the operator can instan-
tiate a new enclave which will restart the computation starting
from the encrypted snapshot. If the TEE uses SGX, snapshots
would leverage SGX’s sealing functionality [31] to protect
the data from the operator while making it available to future
enclave instances.

9.3 Privacy

As mentioned in the introduction, traditional smart contracts
cannot preserve privacy of user inputs and thus always leak
internal data to the public. In contrast to common smart con-
tract technologies, the FASTKITTEN protocol supports privacy
preserving smart contracts as proposed in Hawk [36]. This
requires private contract state to hide the internal execution
of the contract and input privacy, which means that no party
(including the operator) sees any other parties’ round input
before sending its own.

It is straightforward to see that FASTKITTEN has a secret
state, since it is stored and maintained inside the enclave.
Input privacy can easily be achieved by encrypting all inputs
with the public key of the enclave. This guarantees that only
the FASTKITTEN execution facility and the party itself knows
the inputs. If required, FASTKITTEN could also be extended
to support privacy of outputs from the contract to the parties,
by letting the enclave encrypt the individual outputs with the
parties’ public keys. But this additional layer should only be
used when the contract requires it, since in the worst case this
increases the output complexity of the challenge and output
transaction.

9.4 Multi-currency Contracts

FASTKITTEN requires from the underlying blockchain tech-
nology that transactions can contain additional data and can
be timelocked. Any blockchain like Bitcoin, Ethereum, Light-
coin and many others which allow these transaction types
can be used for the FASTKITTEN protocol. With some minor

modifications FASTKITTEN can even support contracts which
can be funded via multiple different currencies. This allows
parties that own coins in different currencies to still execute
a contract (play a game) together. The main modification to
the FASTKITTEN protocol is that the operator and the enclave
need to simultaneously handle multiple blockchains in par-
allel. In particular, for each of the considered currencies, Q
needs to deposit the sum of all coins that were deposited by
parties in that currency. This is in order to guarantee that if the
operator cheats, players get back their invested coins in the
correct currency. In addition, the operator is obliged to chal-
lenge each party via its blockchain. If the execution completes
(or the operator proves to the enclave that one of the players
cheated), the enclave signs one output transaction for each
of the currencies. While this extension adds complexity to
the enclave program and leads to more transactions and thus
transaction-fees, the overall deposit amount stays identical to
the single blockchain use case.” A complete design and proof
of correctness of a cross-ledger FASTKITTEN is left to future
work.

10 Conclusion

In this paper we have shown that efficient smart contracts
are possible using only standard transactions by combining
blockchain technology with trusted hardware. We present
FASTKITTEN, our Bitcoin-based smart contract execution
framework that can be executed off-chain. Since FASTKIT-
TEN is the first work that supports efficient multi-round con-
tracts handling coins, for the first time, this enables real-time
application scenarios, like interactive online gaming, with mil-
lisecond round latencies between participants. We formally
prove and thoroughly analyze the security of our general
framework, also extensively evaluating its performance in a
number of use cases and benchmarks.

Additionally, we discuss multiple extensions to our protocol,
such as adding output privacy or operator fees, which enrich
the set of features provided by our system.

Acknowledgments

We are grateful to our anonymous reviewers and our shepherd
Mihai Christodorescu for their constructive feedback.

This work has been supported by the German Research Foun-
dation (DFG) as part of projects HWSec, P3 and S7 within the
CRC 1119 CROSSING and the Emmy Noether Program FA
1320/1-1, by the German Federal Ministry of Education and
Research (BMBF) and the Hessen State Ministry for Higher
Education, Research and the Arts (HMWK) within CRISP,
by BMBF within the iBlockchain project, by the Intel Collab-
orative Research Institute for Collaborative Autonomous &
Resilient Systems (ICRI-CARS).

9This solution assumes that any party can receive coins in any of the
considered currencies.

111



Availability

An extended version of this paper, which includes the byte-
code of our sample Bitcoin transactions, will be publicly avail-
able at the Cryptology ePrint Archive at https://eprint.
iacr.org.

References

(1]
(2]
(3]

(4]

(5]

(6l

(7]

(8]

(91

[10]

(11]

[12]

[13]

[14]
[15]

[16]

(17]

(18]

112

BlockCypher, Nov 2018. https://live.blockcypher.com/btc/.

CoinMarketCap, Nov 14 2018. https://coinmarketcap.com.

M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-flow in-
tegrity principles, implementations, and applications. ACM Transac-
tions on Information System Security, 13, 2009.

I. Anati, S. Gueron, S. P. Johnson, and V. R. Scarlata. Innovative
Technology for CPU Based Attestation and Sealing. In Workshop on
Hardware and Architectural Support for Security and Privacy (HASP).
ACM, 2013.

M. Andrychowicz, S. Dziembowski, D. Malinowski, and L. Mazurek.
Secure multiparty computations on bitcoin. In 2014 IEEE Symposium
on Security and Privacy, 2014.

ARM Limited. Security technology: building a secure system
using TrustZone technology. http://infocenter.arm.com/
help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-
009492C_trustzone_security_whitepaper.pdf, 2008.

C. Badertscher, U. Maurer, D. Tschudi, and V. Zikas. Bitcoin as a
transaction ledger: A composable treatment. In CRYPTO, 2017.

J. Barbie. Why smart contracts are not feasible on plasma, Jul 2018.
https://ethresear.ch/t/why-smart-contracts-are-not-
feasible-on-plasma/2598.

G. Belisle. A glimpse into the future of blockchain, 2018. Avail-
able at https://the-blockchain-journal.com/2018/03/29/a-
glimpse-into-the-future-of-blockchain/.

I. Bentov, Y. Ji, F. Zhang, Y. Li, X. Zhao, L. Breidenbach, P. Daian, and
A. Juels. Tesseract: Real-time cryptocurrency exchange using trusted
hardware. JACR Cryptology ePrint Archive, 2017.

A. Biondo, M. Conti, L. Davi, T. Frassetto, and A.-R. Sadeghi. The
guard’s dilemma: Efficient code-reuse attacks against intel sgx. In
Proceedings of the 27th USENIX Conference on Security Symposium.
USENIX Association, 2018.

F. Brasser, S. Capkun, A. Dmitrienko, T. Frassetto, K. Kostiainen,
U. Miiller, and A. Sadeghi. DR.SGX: hardening SGX enclaves against
cache attacks with data location randomization. CoRR, abs/1709.09917,
2017.

F. Brasser, U. Miiller, A. Dmitrienko, K. Kostiainen, S. Capkun, and A.-
R. Sadeghi. Software grand exposure: SGX cache attacks are practical.
In USENIX Workshop on Offensive Technologies, 2017.

Breadwallet. Breadwallet-core - spv bitcoin c library, 2018.

N. Burow, S. A. Carr, S. Brunthaler, M. Payer, J. Nash, P. Larsen, and
M. Franz. Control-flow integrity: Precision, security, and performance.
CoRR, 2016.

V. Buterin et al. A next-generation smart contract and decentralized
application platform. white paper, 2014.

C. che Tsai, D. E. Porter, and M. Vij. Graphene-sgx: A practical library
OS for unmodified applications on SGX. In 2017 USENIX Annual
Technical Conference, 2017.

S. Chen, X. Zhang, M. K. Reiter, and Y. Zhang. Detecting privileged
side-channel attacks in shielded execution with Déjd Vu. In ACM
Symposium on Information, Computer and Communications Security,
2017.

(19]

(20]

[21]

[22]

(23]

(24]

[25]

[26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

R. Cheng, F. Zhang, J. Kos, W. He, N. Hynes, N. Johnson, A. Juels,
A. Miller, and D. Song. Ekiden: A platform for confidentiality-
preserving, trustworthy, and performant smart contract execution. arXiv
preprint arXiv:1804.05141, 2018.

J. Coleman, L. Horne, and L. Xuanji. Counterfactual: General-
ized state channels, Jun 2018.  https://14.ventures/papers/
statechannels. pdf.

M. Conti, S. Crane, T. Frassetto, A. Homescu, G. Koppen, P. Larsen,
C. Liebchen, M. Perry, and A.-R. Sadeghi. Selfrando: Securing the tor
browser against de-anonymization exploits. Proceedings on Privacy
Enhancing Technologies, 2016.

V. Costan, I. A. Lebedev, and S. Devadas. Sanctum: Minimal Hard-
ware Extensions for Strong Software Isolation. In USENIX Security
Symposium, 2016.

L. Davi, A. Dmitrienko, S. Niirnberger, and A. Sadeghi. Gadge me if
you can: secure and efficient ad-hoc instruction-level randomization
for x86 and ARM. In 8th ACM Symposium on Information, Computer
and Communications Security, ASTACCS, 2013.

S. Dziembowski, S. Faust, and K. Hostdkova. General state chan-
nel networks. In Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, CCS 2018, Toronto, ON,
Canada, October 15-19, 2018, 2018.

H. Galal and A. Youssef. Verifiable sealed-bid auction on the ethereum
blockchain. In International Conference on Financial Cryptography
and Data Security, Trusted Smart Contracts Workshop. Springer, 2018.

J. A. Garay, A. Kiayias, and N. Leonardos. The bitcoin backbone
protocol with chains of variable difficulty. In CRYPTO. Springer, 2017.

D. Gruss, J. Lettner, E. Schuster, O. Ohrimenko, I. Haller, and M. Costa.
Strong and Efficient Cache Side-Channel Protection using Hardware
Transactional Memory. In 26th USENIX Security Symposium, 2017.

M. Hachman. Intel’s plan to fix meltdown in silicon raises
more questions than answers. https://www. pcworld. com/
article/3251171/components-processors/intels-plan-to-
fix-meltdown-in-silicon-raises-more-questions-than-
answers.html, 2018.

M. Hoekstra, R. Lal, P. Pappachan, V. Phegade, and J. Del Cuvillo.
Using Innovative Instructions to Create Trustworthy Software Solutions.
In Workshop on Hardware and Architectural Support for Security and
Privacy (HASP). ACM, 2013.

A. Homescu, S. Brunthaler, P. Larsen, and M. Franz. Librando: trans-
parent code randomization for just-in-time compilers. In ACM SIGSAC
Conference on Computer and Communications Security, CCS, 2013.

Intel. Intel Software Guard Extensions developer guide, 2016.
https://download.@1.org/intel-sgx/linux-1.7/docs/Intel_
SGX_Developer_Guide.pdf.

Intel. Resources and Response to Side Channel L1 Terminal Fault.
https://www.intel.com/content/www/us/en/architecture-
and-technology/11tf.html, 2018.

A. Juels, A. E. Kosba, and E. Shi. The ring of gyges: Investigating
the future of criminal smart contracts. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security,
Vienna, Austria, October 24-28, 2016, 2016.

H. A. Kalodner, S. Goldfeder, X. Chen, S. M. Weinberg, and E. W.
Felten. Arbitrum: Scalable, private smart contracts. In USENIX Security
Symposium, 2018.

A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou. Hawk:
The blockchain model of cryptography and privacy-preserving smart
contracts. In Security and Privacy (SP), 2016 IEEE Symposium on.
IEEE, 2016.

A. E. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou. Hawk:
The blockchain model of cryptography and privacy-preserving smart
contracts. In IEEE Symposium on Security and Privacy, 2016.



(37]

(38]

(39]

[40]

[41]

[42]

[43]

(44]

[45]

[46]

(47]

(48]

(49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

R. Kumaresan and I. Bentov. How to use bitcoin to incentivize correct
computations. In Proceedings of the ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2014,

R. Kumaresan and I. Bentov. Amortizing secure computation with
penalties. In Proceedings of the ACM SIGSAC Conference on Computer
and Communications Security, 2016.

R. Kumaresan, T. Moran, and I. Bentov. How to use bitcoin to play
decentralized poker. In Proceedings of the 22nd ACM SIGSAC Confer-
ence on Computer and Communications Security. ACM, 2015.

R. Kumaresan, V. Vaikuntanathan, and P. N. Vasudevan. Improvements
to secure computation with penalties. In Proceedings of the ACM
SIGSAC Conference on Computer and Communications Security, 2016.

L. Lamport, R. Shostak, and M. Pease. The byzantine generals prob-
lem. ACM Transactions on Programming Languages and Systems
(TOPLAS), 1982.

P. Larsen, A. Homescu, S. Brunthaler, and M. Franz. SoK: Automated
software diversity. In 35th IEEE Symposium on Security and Privacy,
S&P, 2014.

J. Lind, O. Naor, I. Eyal, F. Kelbert, P. R. Pietzuch, and E. G. Sirer.
Teechain: Reducing storage costs on the blockchain with offline pay-
ment channels. In 71th ACM International Systems and Storage Con-
ference, 2018.

R. Matzutt, J. Hiller, M. Henze, J. H. Ziegeldorf, D. Miillmann,
O. Hohlfeld, and K. Wehrle. A quantitative analysis of the impact
of arbitrary blockchain content on bitcoin. In Proceedings of the 22nd
International Conference on Financial Cryptography and Data Security
(FC). Springer, 2018.

F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi,
V. Shanbhogue, and U. R. Savagaonkar. Innovative Instructions and
Software Model for Isolated Execution. In Workshop on Hardware and
Architectural Support for Security and Privacy (HASP). ACM, 2013.

Microsoft. The coco framework, 2018. GIT repository available at
https://github.com/Azure/coco-framework.

I. Miers, C. Garman, M. Green, and A. D. Rubin. Zerocoin: Anonymous
distributed e-cash from bitcoin. In Security and Privacy (SP), 2013
IEEE Symposium on. IEEE, 2013.

A. Miller and I. Bentov. Zero-collateral lotteries in bitcoin and
ethereum. In Security and Privacy Workshops (EuroS&PW), 2017
IEEE European Symposium on. IEEE, 2017.

A. Miller, I. Bentov, R. Kumaresan, and P. McCorry. Sprites: Payment
channels that go faster than lightning. CoRR, abs/1702.05812, 2017.

V. Mohan, P. Larsen, S. Brunthaler, K. W. Hamlen, and M. Franz.
Opaque control-flow integrity. In NDSS, 2015.

>

S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system,
http://bitcoin.org/bitcoin.pdf, 2008.

J. Noorman, P. Agten, W. Daniels, R. Strackx, A. Van Herrewege,
C. Huygens, B. Preneel, I. Verbauwhede, and F. Piessens. San-
cus: Low-cost trustworthy extensible networked devices with a zero-
software trusted computing base. In 22nd USENIX Security symposium,
USENIX Sec, 2013.

V. Pappas, M. Polychronakis, and A. D. Keromytis. Smashing the
gadgets: Hindering return-oriented programming using in-place code
randomization. In 33rd IEEE Symposium on Security and Privacy,
S&P, 2012.

R. Pass, E. Shi, and F. Trameér. Formal abstractions for attested execu-
tion secure processors. JACR Cryptology ePrint Archive, 2016.

J. Poon and V. Buterin. Plasma: Scalable autonomous smart contracts,
Aug 2017. Plasma, https://plasma.io/plasma.pdf/.

J. Seo, B. Lee, S. Kim, M.-W. Shih, I. Shin, D. Han, and T. Kim. SGX-
Shield: Enabling address space layout randomization for SGX pro-

grams. In Annual Network and Distributed System Security Symposium,
2017.

[57] M.-W. Shih, S. Lee, T. Kim, and M. Peinado. T-SGX: Eradicating
controlled-channel attacks against enclave programs. In Annual Net-
work and Distributed System Security Symposium, 2017.

[58] J. Teutsch and C. ReitwieBner. A scalable verification solution for
blockchains, Nov 2017. https://people.cs.uchicago.edu/
~teutsch/papers/truebit.pdf.

[59] F. Tramer, F. Zhang, H. Lin, J. Hubaux, A. Juels, and E. Shi. Sealed-
glass proofs: Using transparent enclaves to prove and sell knowledge.
In 2017 IEEE European Symposium on Security and Privacy, EuroS&P,
2017.

[60] J. Van Bulck, F. Piessens, and R. Strackx. Foreshadow: Extracting the
keys to the intel sgx kingdom with transient out-of-order execution. In
27th USENIX Security Symposium (USENIX Security 18). USENIX
Association, 2018.

[61] R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin. Binary stirring:
self-randomizing instruction addresses of legacy x86 binary code. In
ACM SIGSAC Conference on Computer and Communications Security,
CCS, 2012.

[62] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant,
D. Song, and W. Zou. Practical control flow integrity and random-
ization for binary executables. In 34th IEEE Symposium on Security
and Privacy, S&P, 2013.

[63] F.Zhang, E. Cecchetti, K. Croman, A. Juels, and E. Shi. Town crier: An
authenticated data feed for smart contracts. In Proceedings of the 2016
ACM SIGSAC conference on computer and communications security.
ACM, 2016.

[64] F.Zhang, P. Daian, I. Bentov, and A. Juels. Paralysis proofs: Safe access-
structure updates for cryptocurrencies and more. IACR Cryptology
ePrint Archive, 2018.

[65] M. Zhang and R. Sekar. Control flow integrity for COTS binaries. In
22nd USENIX Security Symposium, USENIX Sec, 2013.

A Further Related Work

There is a large body of work trying to improve the scalabil-
ity of blockchains by moving a major part of smart contract
executions off the blockchain (for example, via second layer
solutions [24,34,49,55] or outsourcing of computation [58]).
As discussed in the main body of this paper, all of these so-
lutions run on top of blockchains with sufficiently complex
scripting language, e.g., on Ethereum. However, they cannot
be integrated into popular legacy cryptocurrencies such as
Bitcoin, which is their main difference compared to our work.
Recall that one of the main goals of FASTKITTEN is make
minimal assumption on the underlying blockchain technology
and in particular, to run over the Bitcoin blockchain.
Another motivation for off-chain contract execution might be
the goal of protecting privacy. Hawk [36] and the “Ring of
Gyges” [33] are examples of works that do keep the state,
all inputs and outputs private. It is also true for the scaling
solutions mentioned above; These techniques work only over
cryptocurrencies with support for complex smart contracts,
e.g. over Ethereum.

Below we discuss the differences between these solutions and
FASTKITTEN when run on top of Ethereum.

A.1 Second-layer Scaling Solutions

State Channels State channels [20,24,49] are a prominent
second layer scaling solution. They allow a set of parties

113



to execute complex smart contracts off-chain. As long as
all parties are honest and agree on the state transitions, the
blockchain is contacted only during the channel creation,
when parties lock funds in the channel, and during channel
closure, when the locked funds are distributed back to the
parties according to the result of contract execution. However,
once parties run into disagreement off-chain, they have to
resolve their dispute on-chain and perform the state transition
via the blockchain.

While in the optimistic case when all parties are honest, state
channels are very efficient, a potentially heavy computation
might need to be done on-chain in case of disagreement. This
is in contrast to the FASTKITTEN protocol which does not
require any computation to be performed on the blockchain
even in case of disputes.

Plasma Another promising second-layer scaling solution is
Plasma, first introduced by Poon and Buterin [55]. The main
idea of Plasma is to build new chains (Plasma chains) on
top of the Ethereum blockchain. Each Plasma chain has its
own operator that is responsible for validating transactions
and regularly posting a short commitment about the current
state of the Plasma chain to a smart contract on the Ethereum
blockchain. The regular commitments guarantee to the partic-
ipants of the Plasma chain that in case the operator cheats, his
misbehavior can be proven to the Ethereum smart contract
and parties can exit the Plasma chain with all their funds.
While the original goal of Plasma [55] was to support arbi-
trary complex smart contracts, to the best of our knowledge,
there is no concrete protocol that would achieve this goal
(the existing Plasma designs support only payment transac-
tions). Moreover, the plasma research community currently
conjectures that Plasma with general smart contracts might
be impossible to construct [8].

A.2 Incentive-driven Verification

Arbitrum The disadvantage of state channels, i.e., the po-
tentially heavy on-chain execution in case of dispute, is being
addressed by the work Arbitrum [34]. Every smart contract,
which Arbitrum models as a virtual machine (VM), to be
executed off-chain has a set of “manager” parties responsi-
ble for correct VM execution. As long as managers reach
consensus on the VM state transitions, execution progresses
off-chain similarly as in state channels. In case of dispute,
managers do not perform the VM state transition on-chain as
in state channel. Instead, one manager can propose the next
VM state which other managers can challenge. If the newly
posted state is challenged, the proposer and the challenger
run an interactive protocol via the blockchain, so-called “bi-
section” protocol, in which one disputable computation step
is eventually identified and whose correct execution is ver-
ified on-chain. Hence, instead of executing the entire state
transition on-chain (which might potentially require a lot of
time/space), only one computation step of the state transition

114

has to be performed on-chain in addition to the bisection pro-
tocol (which might require O(log(s)) blockchain transactions,
where s is the number of computations steps in the state tran-
sition). The Arbitrum protocol works under the assumption
that at least one manager of the VM is honest and challenges
false states if they are posted by other managers. Since the
blockchain interaction during the bisection protocol is rather
expensive, Arbitrum uses monetary incentives to motivate
managers to behave honestly and follow the protocol.

TrueBit Another solution that supports off-chain execution
of smart contracts using incentive verification is TrueBit [58].
For each off-chain execution, the TrueBit system selects (us-
ing a lottery) one party, called the “Solver”, that is responsible
for performing the state transition and inform all other parties
about the new contract state. The TrueBit system incentives
parties to become so called “verifiers” and check the correct-
ness of the computation performed by the Solver. In case they
detect misbehavior, they are supposed to challenge the Solver
on the blockchain and run the “verification game” which
works similarly as the “bisection protocol” of Arbitrum. Sim-
ilar to Arbitrum, TrueBit relies on the assumption that there
is at least one honest verifier which correctly performs all
the validations and challenges malicious Solvers. In contrast
to Arbitrum, all inputs and the contract state are inherently
public even in the optimistic case when everyone is honest.
Apart from the different trust model and lower requirement
on the underlying blockchain technology, FASTKITTEN dif-
fers from Arbitrum and TrueBit by providing stronger privacy
guarantees, meaning that in both the optimistic and the pes-
simistic case, inputs of honest parties as well as the state of
the smart contract remains private.

A.3 TEE:s for privacy

None of the solutions discussed above achieves privacy pre-
serving off-chain contract execution. This is tackled by the
work Hawk [36] which keeps the state, all inputs and all out-
puts private. Hawk contracts [35] achieve these properties
using Ethereum smart contracts that judge computations done
by a third party (a manager), who executes the contract on
private inputs and is trusted not to reveal any secrets. First all
parties submit their encrypted inputs to the contract, then the
manager computes the result and proves its correctness with a
zero knowledge proof. If the proof is correct, the contract pays
out money accordingly. While the authors of Hawk discuss
the possibility to use SGX for instantiating the manager and
reducing the trust assumptions in this party, it still leverages
the blockchain for every user input, and it only supports single
round protocols which is their main difference to FASTKIT-
TEN. A possible extension to multi-round protocols would be
difficult to achieve without letting the smart contract verify
the correctness of every round individually, and thus create a
large blockchain communication overhead.



HYBCACHE: Hybrid Side-Channel-Resilient Caches
for Trusted Execution Environments

Ghada Dessouky, Tommaso Frassetto, Ahmad-Reza Sadeghi
Technische Universitit Darmstadt, Germany
{ghada.dessouky, tommaso.frassetto, ahmad.sadeghi}@trust.tu-darmstadt.de

Abstract

Modern multi-core processors share cache resources for max-
imum cache utilization and performance gains. However, this
leaves the cache vulnerable to side-channel attacks, where
inherent timing differences in shared cache behavior are ex-
ploited to infer information on the victim’s execution pat-
terns, ultimately leaking private information such as a secret
key. The root cause for these attacks is mutually distrusting
processes sharing the cache entries and accessing them in a
deterministic and consistent manner. Various defenses against
cache side-channel attacks have been proposed. However,
they suffer from serious shortcomings: they either degrade
performance significantly, impose impractical restrictions, or
can only defeat certain classes of these attacks. More im-
portantly, they assume that side-channel-resilient caches are
required for the entire execution workload and do not allow
the possibility to selectively enable the mitigation only for
the security-critical portion of the workload.

We present a generic mechanism for a flexible and soft
partitioning of set-associative caches and propose a hybrid
cache architecture, called HYBCACHE. HYBCACHE can be
configured to selectively apply side-channel-resilient cache
behavior only for isolated execution domains, while providing
the non-isolated execution with conventional cache behavior,
capacity and performance. An isolation domain can include
one or more processes, specific portions of code, or a Trusted
Execution Environment (e.g., SGX or TrustZone). We show
that, with minimal hardware modifications and kernel sup-
port, HYBCACHE can provide side-channel-resilient cache
only for isolated execution with a performance overhead of
3.5-5%, while incurring no performance overhead for the
remaining execution workload. We provide a simulator-based
and hardware implementation of HYBCACHE to evaluate the
performance and area overheads, and show how HYBCACHE
mitigates typical access-based and contention-based cache
attacks.

1 Introduction

For decades now, upcoming processor generations are being
augmented with novel performance-enhancing capabilities.
Performance and security of processor architectures and mi-
croarchitectures are considered exclusively independent de-
sign metrics, with architects primarily focused on the more
tangible performance benefits. However, the recent outbreak
of micro-architectural cross-layer attacks [4-6,18,19,22,42,
44,46,47,50,56,59,68,70,79], has demonstrated the critical
and long-ignored effects of micro-architectural performance
optimizations on systems from a security standpoint. It is be-
coming evident how performance and security are at conflict
with each other unless architects address the design trade-off
early on and not as an afterthought.

One prominent performance feature and the subject of a
wide range of recent architectural attacks is the use of caches
and cache-like structures to provide orders-of-magnitude
faster memory accesses. The intrinsic timing difference be-
tween a cache hit and miss is one of various side channels
that can be exploited by an adversary process via a carefully
crafted side-channel attack to infer the memory access pat-
terns of a victim process [23,25-29,34,35,38,54,61,71,77,78].
Consequently, the adversary can leak unauthorized informa-
tion, such as a private key, hence violating the confidentiality
and isolation of the victim process.

Cache Side-Channel Attacks. In earlier years, cache side-
channel attacks have been shown to compromise crypto-
graphic implementations [8,54,61,78]. More recently, attack
variants such as Prime + Probe [34,38,54,61] and Flush +
Reload attacks [29, 78] are being demonstrated on a much
larger scale. They have been shown to bypass address space
layout randomization (ASLR) [23,25], infer keystroke behav-
ior [26,27], or leak privacy-sensitive human genome indexing
computation [11], whereby millions of platforms using vari-
ous architectures have been shown vulnerable to such attacks.
The attacks require an adversary to orchestrate particular
cache evictions of target memory addresses of interest and

115



after a time interval measure its own memory access latencies
or observe relevant computation and profile how it has been
affected. This enables the adversary to deduce the victim’s
memory access patterns and infer dependent secrets. Cache
side-channel attacks have been shown to exploit core-specific
caches as well as shared last-level caches across different
cores or virtual machines [27,38,54]. Even hardware-security
extensions and trusted execution environments (TEEs) such
as Intel SGX [13,33] and ARM TrustZone [7] are not im-
mune to these attacks. While they do not claim cache side-
channel security, recent cache side-channel attacks targeting
SGX [11,21,60,66] and TrustZone [49, 80] have been shown
to compromise the acclaimed privacy and isolation guarantees
of these security architectures, thus undermining their very
purpose.

Existing Cache Defenses. To defeat cache side-channel
attacks, there has been extensive research on techniques to
identify and mitigate information leaks in a software’s mem-
ory access patterns [16, 17,45]. However, mitigating these
leaks efficiently for arbitrary software (beyond cryptographic
implementations) remains impractical and challenging. Alter-
natively, hardware-based and software approaches have been
proposed to modify the cache organization itself to limit cache
interference across different security domains. Examples in-
clude modifying replacement and leveraging inclusion poli-
cies [39,76], as well as approaches that rely on cache partition-
ing [24,40,41,51,72,73, 82], and randomization/obfuscation-
based schemes [52,53, 63,69, 73] to randomize the relation
between the memory address and its cache set index.

While strict cache partitioning is the intuitive approach
to provide complete cache isolation and non-interference
between mutually distrusting processes, it remains highly
impractical and prevents efficient cache utilization. On the
other hand, randomization-based approaches make the attacks
computationally much more difficult by randomizing the map-
ping of memory addresses to cache sets. However, existing
schemes either require complex management logic, impose
particular restrictions, rely on weak cryptographic functions,
or mitigate only some classes of cache side-channel attacks.
Most importantly, all of the aforementioned schemes are de-
signed to provide side-channel cache protection for the entire
code execution, which is actually not required in practice.

Our Goals. We observe that usually the majority of the code
is not security-critical. Typically, a small portion of the code
is security-critical and requires cache-based side-channel re-
silience. Moreover, this security-critical portion of the code
is often already running in an isolated environment, such as
in a TEE or in an isolated process. In these cases, a trusted
component, namely the processor hardware or microcode or
the operating system kernel, enforces this isolation. We aim to
leverage and extend this existing isolation mechanism to also
selectively enable side-channel resilience for the caches only

116

for the portion of the code that needs it, without reducing the
cache performance for the remaining non-isolated code. In
doing so, we practically address the persistent performance-
security trade-off of caches by providing the system adminis-
trator with a "tuning knob" to configure by balancing and iso-
lating the workload as required. Consequently, s/he can tune
the resulting cache side-channel resilience, utilization, and
performance, while guaranteeing no performance overhead
is incurred on the non-isolated portion of the code execution.
Only the isolated (usually the minority) portion is subject to
a reasonable reduction in cache capacity and performance —
the cost of increased security guarantees.

To achieve this flexible and hybrid cache behavior, we
introduce HYBCACHE, a generic mechanism that protects iso-
lated code from cache side-channel attacks without reducing
the cache performance for the remaining non-isolated code.
In HYBCACHE, isolated execution only uses a pre-defined
(small) number of cache ways1 in each set of a set-associative
cache. It uses these ways fully-associatively, while for evic-
tion random victim cache lines are selected to be replaced
by new ones, thus breaking the set-associativity and remov-
ing the root cause of access leakage. Non-isolated execution
uses all cache ways set-associatively as usual, without any
performance overhead. While isolated and non-isolated exe-
cution may compete for the use of some ways in the cache,
the random replacement policy and fully-associative mapping
used by the isolated execution prevent leaking information
about the accessed memory locations (and their cache set
mapping) to the non-isolated execution, thus making the pre-
computation and construction of an eviction set impossible.
Moreover, HYBCACHE flexibly supports multiple, mutually
distrusting isolated execution domains while preserving the
above security guarantees individually for each domain.

HYBCACHE is architecture-agnostic, and can be seam-
lessly integrated with any isolation mechanism (TEEs or inter-
process isolation); the definition of the isolation domains and
the distribution of the workload is left up to the system admin-
istrator. HYBCACHE is backward compatible by design; it
provides conventional set-associative caches for the workload
if the side-channel resilience feature is not supported.

Contributions. The main contributions of this paper are as
follows.

* We present HYBCACHE, the first cache architecture de-
signed to provide flexible configuration of cache side-
channel resilience by selectively enabling it for isolated
execution without degrading the performance and avail-
able cache capacity of non-isolated execution.

* We evaluate the performance overhead of a simulator-
based implementation of HYBCACHE and show that it
is less than 5% for the SPEC2006 benchmarks suite,

' Ways are different available entries in a cache set to which a particular
memory address can be allocated.



and estimate the memory and area overheads of a cycle-
accurate hardware implementation of HYBCACHE.

* We show — through our security analysis — how breaking
set-associative mapping and shared cache lines between
mutually distrusting isolation domains (which are the
root causes for typical cache side-channel attacks besides
the intrinsic cache sharing and competition) mitigates
typical contention-based and access-based cache attacks.

2 Cache Organization, Attacks and Defenses

We briefly present the typical cache organization, as well as
recent cache side-channel attacks that are within the scope of
our work, and limitations of existing defenses.

2.1 Cache Organization

Cache Structure. Caches are typically arranged in a hi-
erarchy of fastest/closest/smallest to slowest/furthest/largest
levels of cache, respectively L1, L2, and L3 cache/last-level-
cache (LLC). Each core incorporates its L1 and L2 caches and
shares the LLC with other on-chip cores. A cache consists of
the storage of the actual cached data/instructions and the tag
bits of their corresponding memory addresses. Cache memory
is organized into fixed-size memory blocks, called cache lines
each of size B bytes. Set-associative caches are organized
into S sets of W ways each (called a W-way set-associative
cache) where each way can be used to store a cache line. A
single cache line can only be allocated to only one of the
cache sets, but can occupy any of the ways within this cache
set. The least significant log, B bits are the block offset bits
that indicate which byte block within the B-Byte cache line
is requested. The next log, S bits are the index bits used to
locate the correct cache set. The remaining most significant
bits are the tag bits for each cache line.

In a set-associative cache, once the cache set of a requested
address is located, the rag bits of the address are matched
against the tags of the cache lines in the set to identify if it is
a cache hit. If no match is found, then it is a miss at this cache
level, and the request is sent down to the next lower-level
cache in the hierarchy until the requested cache line is found
or fetched from main memory (cache miss). However, in a
fully-associative cache, a cache line can be placed in any of
the cache ways where the entire cache serves as one set. No
index bits are required, but only /og> B block offset bits and
the rest of the bits serve as tag bits.

Eviction and Replacement. Due to set-associativity and
limited cache capacity, cache contention and capacity misses
occur where a cache line must be evicted in favor of the
new cache line. Which cache line to evict depends on the
replacement policy deployed, some of which include First-in-
First-Out (FIFO), Least-Recently-Used (LRU), pseudo-LRU,
Least-Frequently-Used (LFU), Not-Recently-Used (NRU),

random and pseudo-random replacement policies. In practice,
approximations to LRU (pseudo-LRU) and random replace-
ment (pseudo-random) are usually deployed.

2.2 Cache Side-Channel Attacks

Cache side-channel attacks pose a critical threat to trusted
computing and underlie more proliferating side-channel at-
tacks such as the Spectre [44] and Meltdown [50] vari-
ants. Different classes of these attacks have been demon-
strated on all platforms and architectures ranging from mo-
bile and embedded devices [49] to server computing sys-
tems [34,54,81]. They have also been shown to undermine
the isolation guarantees of trusted execution environments,
like Intel SGX [11,21,60,66] and ARM TrustZone [49, 80].
Such attacks have been shown to infer both fine-grained and
coarse-grained private data and operations, such as bypass-
ing address space layout randomization (ASLR) [23, 25],
inferring keystroke behavior [26, 27], or leaking privacy-
sensitive human genome indexing computation [11], as well
as RSA [54,81] and AES [10,34] decryption keys.

Cache side-channel attacks exploit the inherent leakage
resulting from the timing latency difference between cache
hits and misses. This is then used to infer privacy/security-
critical information about the victim’s execution. In an offline
phase, the attacker must first identify the target addresses of
interest (by means of static and dynamic code analysis of
the victim program) whose access patterns leak the desired
information about the victim’s execution, such as a private
encryption key. In an online phase, the attacker measures
the timing latency of its memory accesses or the victim’s
computation time to infer the desired information.

To demonstrate how a simple cache attack works, consider
the pseudo-code of the Montgomery ladder implementation
for the modular exponentiation algorithm shown in Algo-
rithm 1. Modular exponentiation is the operation of raising a
number b to the exponent e modulo m to compute b¢ mod m
and is used in many encryption algorithms such as RSA. Leak-
ing the exponent e may reveal the private key. As shown in
Algorithm 1, the operations performed for each of the expo-
nent bits directly correspond to the value of the bit. If the
exponent bit is a zero, the instruction in Line 5 is executed.
If the exponent bit is a one, the instruction in Line 9 is exe-
cuted. An attacker that can observe or deduce these execution
patterns can thus disclose the value of each corresponding ex-
ponent bit, and eventually recover the encryption key [78, 81].
S/he, however, needs to identify the target addresses that need
to be observed (the addresses of the instructions in Lines 5
and 9 in this example) in the victim program and accordingly
construct the eviction set. The eviction set is a collection of
addresses that are mapped to the same specific cache set to
which the target addresses are also mapped. The attacker uses
this eviction set to evict the contents of the whole set in the
cache, and therefore guarantee to successfully evict the target

117



addresses from the caches. Consequently, s’he measures the
timing latency of its own memory accesses after a time in-
terval to deduce whether the victim has accessed these target
addresses.

Algorithm 1: Montgomery Ladder RSA Implementa-
tion
Input: base b, modulo m, exponent e = (e,—1...€p),
Output: b mod m
1 Rp < 13 Ry < b;
2 for i from n-1 downto 0 do

3 if ¢; = O then

4 Ry + Ry X R; mod m;
5 Ry <+ Rp X Rop mod m;
6 end

7 if ¢; = I then

8 Ry <+ Rp X R; mod m;
9 Ry < R X R; mod m;
10 end
11 end

12 return Ry;

The online phase of these attacks consists of three main
steps: Eviction, Waiting and Analysis. The attacker uses the
eviction set to evict the victim’s target addresses from the
cache. Next, the attacker waits an interval of time to allow
the victim to access the target addresses. Then the attacker
measures and analyzes its access time measurements to de-
termine if the victim has accessed the target addresses. This
is repeated as many times as the attacker requires to collect
sufficient traces to recover the exponent bits.

The different techniques used by the attacker to perform
the eviction can be classified into two main approaches, either
access-based or contention-based. In access-based attacks
such as Flush + Reload [29, 78], Flush + Flush [26], Invali-
date + Transfer [35], and Flush + Prefetch [25], the attacker
accesses the target addresses directly by flushing them out
of the cache using the dedicated clflush instruction [2] and
possibly exploiting timing leakage from the execution of the
clflush instruction [26]. This invalidates the lines containing
these addresses and writes them back to memory. Evict +
Reload [27] attacks have also been shown which do not re-
quire the clflush instruction, but instead evict specific cache
sets by accessing physically congruent addresses. These at-
tacks are only feasible in case of shared memory pages be-
tween the attacker and victim, usually in the form of shared
libraries. Otherwise, an attacker resorts to contention-based
attacks such as Prime + Probe [34, 38, 54,61, 77], Prime +
Abort [15], Evict + Time [23, 61], alias-driven attacks [28],
and indirect Memory Management Unit (MMU)-based cache
attacks [71], where s/he constructs an eviction set and uses it
to trigger and exploit a cache contention in the same cache set
as the target addresses, thus evicting cache lines containing
the target addresses from the pertinent cache set.

The waiting interval should be selected and synchronized
such that the victim is expected to access the target address

118

at least once before the attacker analyzes the collected obser-
vations. By analyzing the collected observations, the attacker
determines whether the target address was indeed accessed by
the victim. This is achieved by different techniques depend-
ing on the attack approach, either the adversary measures the
overall time needed by the victim process to perform certain
computations [8, 10], or probes the cache with eviction sets
and profiles cache activity to deduce which memory addresses
were accessed [34,38,54,77,78], or accesses target memory
addresses and measures the timing of these individual ac-
cesses [29, 61]. Alternatively, the adversary can also read
values of addresses from the main memory to see whether
cache lines that contain cacheable target addresses have been
evicted to memory [28].

Cache-collision timing attacks exploit cache collisions that
the victim experiences due to its cache utilization, e.g., after
a sequence of lookups performed by a table-driven software
implementation of an encryption scheme, such as AES [10].
These attacks are out of scope in this work since they are not
common, are specific to certain software implementations,
and can only be mitigated by adapting the implementation or
locking the relevant cache lines after pre-loading them.

2.3 Limitations of Existing Defenses

To mitigate these attacks, software-based countermeasures
and modified cache architectures have been proposed in re-
cent years, which we cover in depth in the Related Work
(Section 8). These can be classified into two main paradigms:
1) applying cache partitioning to provide strict isolation, or
2) applying randomization or noise to make the attacks com-
putationally impractical. However, all proposed countermea-
sures to date either impact performance significantly, require
explicit programmer’s annotations, are not seamlessly com-
patible with existing software requirements such as the use
of shared libraries, are architecture-specific, or do not defend
against all classes of attacks. Most importantly, all existing
defenses apply their side-channel cache protection for the
entire execution workload.

In practice, cache side-channel resilience is only required
for the security-critical (usually smaller) portion of the work-
load that is allocated to execute in isolation. Thus, non-
isolated execution should not suffer any resulting performance
costs. To address this in this work, we propose a modified
hybrid cache microarchitecture that enables side-channel re-
silience only for the isolated portion of execution, while re-
taining the conventional cache behavior and performance for
the non-isolated execution.

3 Adversary Model and Assumptions

To provide side-channel-resilient cache accesses for only
security-critical isolated execution, we propose a hybrid soft
partitioning scheme for set-associative memory structures.



In this work, we apply it to caches and call it HYBCACHE.
HYBCACHE aims to provide cache-based side-channel re-
silience to the security-critical or privacy-sensitive workload
that is allocated to one or more Isolated Execution Domains
(I-Domains), while maintaining conventional cache behavior
for non-critical execution that is allocated to the Non-Isolated
Execution Domain (NI-Domain). HYBCACHE assumes an
adversary capable of mounting the attacks described in Sec-
tion 2.2 and is designed to mitigate them.

Furthermore, the construction of HYBCACHE is based on
the following assumptions:

Al Security-critical code that requires side-channel re-
silience is already allocated to an isolated component,
like a process or a TEE (enclave).

A recent trend in the design of complex applications, like web
browsers, is to compartmentalize them using multiple pro-
cesses. As an example, all major browsers spawn a dedicated
process for every tab [43] and some even use a dedicated pro-
cess to better isolate privileged components [58]. Similarly,
the widespread availability of TEEs, like SGX, encourages
developers to encapsulate sensitive components of their code
in protected environments.

A2 Isolated execution is the minority of the workload.

Isolation works best when the isolated component is as small
as possible, thus reducing the attack surface. This complies
with the intended usage of TEEs like SGX where only small
sensitive components of the code would be allocated to the
TEE. Hence, we assume only the minority of the workload
needs to be isolated. HYBCACHE still provides the same
security guarantees if the majority of the workload is isolated,
but the performance of the isolated execution would suffer.

A3 Sensitive code only uses writable shared memory for I/O
(if at all), and access patterns to this shared memory do
not leak any information.

Isolated code should focus on processing some local data,
while I/0O needs should be limited to copying the input(s)
into the isolated component, and copying the output(s) out
of the component. Both of these procedures just access the
data sequentially; thus, the access patterns during I/O do not
depend on the data and does not leak any information.

A4 The attacker is not in the same I-Domain as the victim.

HYBCACHE is designed to isolate mutually distrusting I-
Domains and thus, we must assume the attacker and the vic-
tim are not in the same I-Domain. Note that, as a consequence
of A3, if a process handles sensitive data and has multiple
threads, they must all be in the same I-Domain, since they
share the entire address space. In cases where isolation be-
tween threads sharing the same address space is also required,
HYBCACHE can, in principle, provide intra-process isolation
as discussed later in Section 7.

4 Hybrid Cache (HYBCACHE)

We systematically analyzed existing contention-based and
access-based cache attacks in the literature (Section 2.2) to
identify their common root causes (besides the intrinsic shar-
ing of cache entries and latency difference between a cache
hit and miss). Cache side-channel attacks are, by nature, very
specific to the victim program and may exploit attack-specific
features such as the side-channel leakage of the clflush [26]
or prefetch instructions [25]. Nevertheless, each one of these
attacks is primarily caused by one or both of the following
root causes: shared memory pages (and cache lines) between
mutually distrusting code, and deterministic and fixed set-
associativity of cache structures, which enables targeted cache
set contention by pre-computed eviction sets.

4.1 Requirements Derivation

In light of the above, HYBCACHE should provide side-
channel resilience between different isolation domains with
respect to their cache utilization. An adversary process shar-
ing the cache with a victim process should not be able to
distinguish which memory locations a victim accesses. Nev-
ertheless, we emphasize that the only approach to enforce
complete non-interference between different domains is by
strict static cache partitioning, such that no cache resources
are shared, and thus zero information leakage occurs. On
the other hand, this is impractical, and results in inefficient
cache utilization from a performance standpoint. Our key
objective in this work is to practically address and accommo-
date this persistent performance/security trade-off of cache
structures by providing sufficiently strong cache side-channel-
resilience, such that practical and typical cache side-channel
attacks become effectively infeasible without necessarily en-
forcing complete non-interference. Additionally, we desire
that this security guarantee is run-time configurable, such that
it is only in effect when required.

This builds on our insight that it is neither practical nor
required to provide cache side-channel resilience for all the
code in the workload. This additional security guarantee is
only required for security-critical execution, which is a mi-
nority of the workload (Assumption A2), and usually isolated
in a Trusted Execution Environment (TEE) (Assumption Al).
Thus, we require to provide a cache architecture that provides
non-isolated execution with conventional cache utilization
(with no performance costs), and simultaneously side-channel-
resilient cache utilization (with a tolerable performance degra-
dation) only for the smaller portion of the execution workload
that is security-sensitive and isolated. We also require that
our architecture is portable, can be easily deployed, and is
backward compatible when a system does not support it. We
summarize these requirements below:

R1 Strong side-channel resilience guarantees between the
isolated and non-isolated execution domains, sufficient to

119



thwart typical contention-based and access-based cache
attacks

R2 Dynamic and scalable cache isolation between multiple
different isolation domains

R3 Addressing the cache performance/security trade-off by
configuring the non-isolated/isolated workload balance
(compliant with how TEEs are intended and designed to
be used) such that the performance of the non-isolated
execution workload is not degraded

R4 Usability: backward-compatible, architecture-agnostic,
no usage restrictions and no code modifications required

Next, we present the high-level construction of HYBCACHE

in Section 4.2 and its microarchitecture in more detail in

Sections 4.3 and 4.4.

4.2 High-Level Idea

In HYBCACHE, a subset of the cache, named subcache, is re-
served to form an orthogonal isolated cache structure. Specif-
ically, njsorareq cache ways within the conventional cache sets
form the subcache. While these subcache ways are available
for the NI-Domain to utilize, the I-Domains are restricted to
utilize only these subcache ways. However, the I-Domains
utilize this subcache in a fully-associative way and using
a random-replacement policy. In doing so, all mutually dis-
trusting processes executing in the I-Domains can share the
subcache without leaking information on the actual mem-
ory locations they access. Since these subcache ways are
not reserved exclusively for isolated execution and can also
be utilized by non-isolated execution with least priority, the
NI-Domain still retains unaltered cache capacity usage and
non-degraded performance.

The key purpose of HYBCACHE, unlike existing defenses,
is to selectively enable side-channel-resilient cache utilization
only for the I-Domains. Hence, only the isolated execution is
subjected to the resulting performance overhead, while still
maintaining conventional cache behavior and performance for
the NI-Domain, as outlined in Requirement R3. We describe
next the architecture of HYBCACHE and how it achieves this.

4.3 Controller Algorithm

HYBCACHE modifies how memory lines are mapped to cache
entries for the [-Domains. n5,14req Ways (at least a way in each
set) of the conventional set-associative cache are designated
to the orthogonal subcache. Cache lines are mapped fully-
associatively to the subcache entries and evicted and replaced
in the subcache using a random replacement policy. This
means that a given memory line can be cached in any of the
Nisolated €ntries. This breaks the deterministic link between
memory addresses and their corresponding cache locations,
thus defeating an attacker that attempts to infer the victim’s
memory accesses by triggering and observing contention in a
particular cache set.

120

Figure 1 illustrates how the HYBCACHE controller man-
ages cache requests. HYBCACHE supports multi-core proces-
sors with simultaneous multithreading (SMT) and assumes
that each process is assigned an IsolationDomainID (IDID)
that identifies whether the process is in an I-Domain (and
which isolation domain) or in the NI-Domain. Any incoming
cache request is accompanied by the IDID of the issuing pro-
cess. In @ HYBCACHE controller queries the IDID of the
cache request and the request is serviced accordingly. If it is
in the NI-Domain, the complete cache is queried convention-
ally using the set index and tag bits of the requested address
to locate the cache set and line respectively (B) & ©). Ifa
match is found, the controller checks whether the cache line
was found in one of the subcache ways in (D). Recall that
these ways are not reserved exclusively for isolated execution,
i.e., they can be used by non-isolated execution but with least
priority in case a cache set becomes over-utilized. Therefore,
if a matching cache line is found in one of these ways, the
controller checks whether it was cached by an isolated or non-
isolated process ((E)). The requesting process can only hit and
access the cache line if that line was placed by a process in
the NI-Domain. Otherwise, it is not allowed to hit on it.

Checks in the controller are implemented to occur in par-
allel, i.e., all cache hits are generated in the same number of
clock cycles (as well as cache misses), to eliminate respective
timing side channels. In case of a cache miss, the memory
block is fetched from main memory and cached in (F). The
eviction and replacement are performed according to the de-
ployed policy. All ways are available for eviction, including
the subcache ways to provide the NI-Domain execution with
unaltered cache capacity. However, the usage of the subcache
ways by the I-Domains is considered while recording the re-
cency of accesses to the cache ways to make it least likely
to evict a line from one of the subcache ways if it is recently
used by an I-Domain process.

If the cache request is issued by an I-Domain process, it is
serviced by querying only the subcache (@). The subcache
deploys fully-associative mapping, and is thus queried by a
lookup of all the ways using the (cache line address bits -
block offset bits) as tag bits (@) and simultaneously query-
ing that the line belongs to an [-Domain (since these ways
may also be used by the NI-Domain) and that it was placed
by a process with the same IDID (D). Otherwise, a cache
miss occurs. Disallowing I-Domain processes from hitting on
cache lines originally placed by processes in other I-Domains
provides dynamic isolation between an unlimited number of
mutually distrusting processes that share memory. In case of
a miss, any of the subcache ways is randomly selected and
its cache line is evicted and replaced by the memory block
fetched from main memory (). The random replacement
policy considers all subcache ways equally, even those occu-
pied by the NI-Domain cache lines.



incoming
cache request
isolated

®

non-isolated

End End

End

End

Is the process issuing the request in isolated or non-isolated
execution mode?

® &

Query cache set-associatively using set index and tag bits to
locate the way with requested memory block

Is way with matching tag found?
Is it one of the subcache ways?

Is line-IDID = non-isolated (all-zero)?

@ ® @ ©

Cache miss: Evict and replace (via LRU/pseudo-LRU policy)
cache line (including these occupying subcache ways) by
memory block fetched from main memory

Query the n;,..q Ways of subcache fully-associatively using
the requested cache line address as tag for lookup

Is way with matching tag found?
Is way occupied by a line with matching line-IDID?
Cache miss: Randomly replace and evict any of the cache lines

occupying the subcache ways (irrespective of line-IDID of the
cache lines)

©60® ©

FIGURE 1: HYBCACHE controller policy

4.4 Hardware Microarchitecture

Figure 2 shows how HYBCACHE could be applied for a con-
ventional cache hierarchy of a multi-core processor. The cache
capacity available for the NI-Domain execution is unaltered,
i.e., the conventional set-associative cache with all its sets and
ways can be utilized by the NI-Domain.

At each cache level, way-based partitioning is used to re-
serve at least a way in each set (gray ways in Figure 2). These
ways, combined, form the orthogonal subcache that the I-
Domain execution is restricted to use. However, these sub-
cache ways are not used exclusively by the I-Domain execu-
tion, i.e., the NI-Domain execution may use these ways in
case a corresponding set is fully utilized and the least-recently-
used (LRU) replacement algorithm requires to evict a cache
line from a subcache way in this set. This ensures that the NI-
Domain execution is provided with unaltered cache capacity
and does not suffer performance degradation.

The subcache is fully-associative and deploys random re-
placement policy, i.e., a given memory block is always equally
likely to be cached in any of the available ways. This breaks
set-associativity and provides randomization-based dynamic
isolation between different I-Domains while allowing flexible
sharing of the subcache depending on the run-time utilization
requirements of the isolated execution domains. Using the
subcache fully-associatively further maximizes the utilization
of its limited hardwired capacity.

( Core 0 ) ( Core 1 )
Level 1 Instruction Level 1 Data Level 1 Instruction Level 1 Data
Cache Cache Cache Cache
3 1 2 3 ' BENERE 3 1 2 3 NENERE
TS| [
Level 2 Cache Level 2 Cache >
=}
o1lz2]3]as]s o)zzAss"a_Sg
[
v O
£ g3
§¢ F
[ Ji2
a2
Level 3 Shared Cache
set0 setl set2 set3 set4 set5 set6 set7
way0 | wayO | wayO | wayO | wayO | wayO | way0 | wayO
way 1
way 2
way 3 [
=
way 4 =]
R
way 5 v o2
£ a3
way 6 g ®© B
S =
way 7 = 3
CRENS
[ Main Memory ]

FIGURE 2: HYBCACHE hierarchy and organization

The njspiareq Ways that form the subcache are configured
(hardwired) at design-time and cannot change at run-time,
because these ways are members of both the primary cache as

121



well as the subcache as shown in Figure 3. It is not feasible to
make 7;so141q4 TUN-time configurable, as this would require that
all the ways are unreasonably wired in both a fully-associative
and set-associative organization. Thus, only a small subset
of nisorarea Ways (dark gray ways in Figure 3) is selected to
form the subcache. Each of the subcache ways is augmented
with IsolationDomainID (IDID) configuration bits to iden-
tify the isolation domain that placed an occupying cache line
in the pertinent way. To provide any cache isolation at the
microarchitectural level, a mechanism to bind owners/tags to
cache lines is required, thus IDIDs are needed. We chose to
configure 4 bits for the IDID, thus supporting 16 concurrent
isolation domains, where an all-zero indicates the NI-Domain.
The number of bits allocated in HYBCACHE for IDID is a
hardware design decision. Increasing the number of desig-
nated bits would increase the number of maximum concurrent
isolation domains that HYBCACHE can support. However,
other metrics such as area overhead and power consumption
come into play in this design trade-off.

Cacherequest  _ _ _ _ _ _ _ _ _ _ _ . __._._._._

: Req Isolation-Domain | Memory Address (32/39/46-bit) i
i|1D (req-IDID) ‘Tag ‘Offset }

e e el et S 'e
If |(zero) 26/33/40
Extended Tag
Query N, jareg Ways —_—
(fully-associative) Tag Cache Line

[Cache way | } |

line-IDID

Set 1

G| MO

Set 2.

!
i

[ OF
Legend

isolated way with extended tag bits
[ [ |conventional (non-isolated) way @comparator

FIGURE 3: HYBCACHE hardware microarchitecture

The subcache ways are augmented with an extended tag
bits storage (dashed dark gray tag bits of the dark gray ways
in Figure 3). When queried fully-associatively (for the I-
Domains), all bits, except the offset bits (6 bits for byte-
addressable 64B cache line), of the requested address are
compared with the extended tag bits of the subcache ways
to locate a matching cache line. For the NI-Domain, the sub-
cache ways are queried set-associatively with the rest of the
cache (conventionally), where the request tag bits are com-
pared only with the non-extended tag bits of the subcache
ways within the located cache set.

122

4.5 Software Configuration

Abstraction and Transparency. The hardware modifica-
tions required for HYBCACHE are transparent to the software
and abstracted from it. The trusted software (or hardware)
component of the incorporating platform is only required to
interface with the HYBCACHE controller to communicate the
isolation domain of each incoming cache request. However,
HYBCACHE does not stipulate or restrict how these isolation
domains are defined and communicated, thus leaving it to the
discretion of the system designer to identify how HYBCACHE
can be integrated with the comprising architecture.

Isolated Execution. HYBCACHE enables the dynamic iso-
lation of the cache utilization of different isolation domains
by using the IDID of the process that issues the cache request
being serviced. The means by which the isolation domains
are defined, generated, and communicated is dependent on
how the trusted execution and isolation is deployed. We de-
sign HYBCACHE such that it is seamlessly compliant with
any trusted execution environment (TEE) where isolation do-
mains (across different processes, cores, containers, or virtual
machines (VMs)) are either software-defined by a trusted OS
(thus requiring kernel support) or hardware/firmware-defined
in case the OS is not trusted (such as in SGX). Different isola-
tion domains can be defined across different isolated address
space ranges such as in SGX enclaves, across processes such
as in TrustZone normal/secure worlds or by standard inter-
process isolation, or even across different groups of processes
or different virtual machines.

HYBCACHE is agnostic to the means of defining the IDIDs
of different isolation domains, and complements any form
of isolated execution environment in place to provide it with
cache side-channel resilience. If the kernel is trusted, kernel
support is required to assign an IDID (or an all-zero IDID for
a non-isolated process) to each process according to its isola-
tion domain. The IDID bits can be added as an additional pro-
cess attribute in each process’s process control block (PCB).
Otherwise, the trusted hardware or firmware would assign the
isolation domains. HYBCACHE assumes that some mecha-
nism of isolation is already enforced for security-critical code
that it can leverage to provide the cache-level isolation. We
argue why this is reasonable in Assumption Al. Neverthe-
less, if this is not the case, then isolation domains need to
be explicitly defined by the developer if s/he wishes to pro-
tect particular code against cache-based side-channel attacks.
While HYBCACHE is focused on protecting user code, in prin-
ciple, kernel code can also be protected by allocating it to an
isolation domain.

Backward Compatibility. Similar to processor supplemen-
tary capabilities such as Page Attribute Tables (PATs) and
Memory Type Range Register (MTRR) for x86, HYBCACHE
supports providing side-channel-resilience on-demand while



retaining backward compatibility. HYBCACHE only effec-
tively provides side-channel resilience for the cache utilization
of execution when processes are assigned different IDIDs that
are communicated with each cache request. Otherwise, from
a software perspective, HYBCACHE is identical to a conven-
tional cache architecture. If no isolation domains are assigned
to the different processes by the trusted kernel or trusted hard-
ware, HYBCACHE is designed to assign an all-zero IDID by
default to incoming cache requests and all execution is treated
as non-isolated (see Figure 1) with cache-based side-channel
resilience disabled. Only when kernel support is provided
(or trusted hardware or firmware in case of SGX) does HYy-
BCACHE behave differently for different isolation domains
and provides its side-channel resilience capability.

Shared Memory Support. HYBCACHE supports, by de-
sign, that different isolation domains can share read-only
memory, usually in the form of shared code libraries, without
sharing the corresponding cache lines. This results in having
multiple copies of the shared memory kept in cache (multiple
cache entries), enforcing that cache entries are not shared be-
tween mutually distrusting code. Data coherence is also not a
problem, in this case, since this is read-only memory. We elab-
orate in Section 5 how this effectively mitigates access-based
side-channel attacks.

Conventional access to shared writable memory, on the
other hand, between different isolation domains is disallowed
by design in HYBCACHE, as this makes the victim pro-
cess vulnerable to access-based attacks and would under-
mine cache coherence. In order to provide input and output
functionality to isolated code, HYBCACHE provides special
1/0 move instructions. These allow code in an I-Domain to
transfer data between a CPU register and a memory region
(assigned an all-zero IDID when cached) that is designated
exclusively for shared memory between processes belonging
to different [-Domains. These special instructions are meant
to be used to transfer data between domains only through this
designated memory. In practice, we expect them to be used
only in frameworks like the SGX SDK or a trusted kernel. If
code in an I-Domain incorrectly accesses this memory region
using regular instructions, or accesses its own memory using
these special instructions, this could be disallowed, i.e., de-
tected and blocked by the hardware or microcode, e.g., the
MMU. This prevents inserting duplicated writable cache en-
tries which can disrupt cache coherency, while ensuring that
HYBCACHE'’s security guarantees still apply to any access
performed using regular instructions.

S Security Analysis

In the following, we evaluate the effectiveness of HYBCACHE
with respect to the security requirements we outlined in Sec-
tion 4.1. We show that HYBCACHE achieves these security

guarantees by mitigating the following leakages:

S1 Malicious software running in an I-Domain or NI-Domain
cannot flush or perform a cache hit on a cache line belong-
ing to a different [-Domain.

S2 Malicious software running in an I-Domain or NI-Domain
cannot pre-compute and construct an eviction set that
selectively evicts a non-trivial subset of the cache lines
belonging to a different I-Domain. Moreover, the set of
the attacker’s cache lines which can be evicted by the
victim’s lines does not depend on the addresses accessed
by the victim.

S3 Cache hits generated by software in an I-Domain cannot
be observed by software running in a different I-Domain
or NI-Domain. Cache misses generated by software in
an I-Domain can still be indirectly observed by mali-
cious software running in a different I-Domain or NI-
Domain, but the malicious software learns no information
(e.g., memory address) about the access besides whether
a cache miss has occurred.

5.1 S1: Absence of Direct Access to Cache
Lines

Access-based attacks, like Flush + Reload [29, 78], Flush +
Flush [26], Invalidate + Transfer [35], Flush + Prefetch [25],
and Evict + Reload [27], require the attacker to have direct
access to the victim’s cache lines, normally as a result of
shared memory between processes (e.g., shared libraries).
As an example, Flush + Reload works by flushing shared
cache lines and monitoring which lines the victim accesses
and brings back into the cache. HYBCACHE mitigates this
class of attacks by preventing shared cache lines between the
attacker and victim, as we explain in the following.

Shared Read-Only Memory. Read-only memory is shared
between different processes in case of shared code libraries.
HYBCACHE provides support for shared read-only memory
(Section 4.5), while fundamentally disallowing that any cache
line is shared across different I-Domains. Execution within
one domain can only access cache lines brought into the cache
by the same domain. Separate (potentially duplicate) cache
lines are maintained for each domain; flushing and reloading
cache lines only impacts those owned by the attacker’s do-
main and cannot influence any other I-Domain or leak any
information on its cache lines. Having duplicate cache lines
for read-only memory pages does not disturb cache coherency
because it is read-only.

Shared Writable Memory. Shared writable memory be-
tween mutually distrusting domains is disallowed by design
with HYBCACHE. Code in an I-Domain can only exchange
data with another isolation domain through the special I/O

123



move instructions, which transfer data between the CPU reg-
isters and memory in the NI-Domain that is designated for
shared communication (see Section 4.5). Incorrect usage of
those instructions or incorrect access to this designated mem-
ory region could be detected and blocked by the MMU to
prevent potential cache coherency disruption due to dupli-
cate writable cache entries. However, HYBCACHE still en-
forces that every cache line only belongs to one domain. Since
cache lines always belong to one specific [-Domain or the
NI-Domain, code in a domain cannot flush or perform a cache
hit on a different domain’s cache lines (S1), and attacks that
rely on those capabilities are thus impossible.

5.2 S2: Impossibility of Pre-Computed Evic-
tion Set Construction

Without direct access to the victim’s cache lines, attackers
resort to contention-based attacks, like Prime + Probe [34, 38,
54,61, 77], Prime + Abort [15], and Evict + Time [23, 61].
In these attacks, the attacker pre-computes and constructs an
eviction set which ensures eviction of a specific subset of the
victim’s cache lines, e.g., lines that belong to a specific set in
a set-associative cache. The attacker process first accesses the
whole eviction set, thus ensuring the victim’s cache lines are
evicted. After a waiting interval, it then checks if its whole
eviction set is still in cache by timing its own memory ac-
cesses to this set, thus detecting if the victim accessed any of
the cache lines of interest. For a conventional set-associative
cache, this is possible because of a fixed set-indexing, which
can be directly determined from the target address of interest.

HYBCACHE protects I-Domains from such attacks by dis-
abling the set-associativity of the reserved subcache entries
when they are used by isolated execution: when a memory ad-
dress is accessed by the isolated victim process, the cache line
will be stored in any entry chosen randomly from the whole
subcache and not from a specific set. The random replacement
policy for isolated execution ensures that any of the subcache
entries is chosen using a discrete uniform distribution, i.e.,
with an equal and independent probability every time, so the
attacker has no means of identifying deterministically and
reproducibly which cache set (or entry) will be used to cache
a particular memory access of the victim. In order to ensure
that a specific cache line of the victim is evicted, the attacker
can only evict all lines in the subcache, but s/he cannot se-
lectively evict a non-trivial subset of the victim’s cache lines.
Moreover, the set of the attacker’s cache lines which can be
evicted by the victim’s lines does not depend on the addresses
accessed by the victim (S2). As a consequence, attacks that
rely on these capabilities are no longer possible. This holds
whether the attacker process is running in an I-Domain or
NI-Domain, as long as the victim process is in an [-Domain
(Requirements R1 and R2).

124

5.3 S3: Observable Cache Events

Software running in an I-Domain can only hit on cache lines
belonging to the same I-Domain. These cache hits generate
no changes to the cache state, thus, they are unobservable by
an attacker in a different I-Domain or in the NI-Domain.

Cache misses generated by software in an [-Domain evict a
random cache line, which may belong to a different I-Domain
or the NI-Domain. Malicious attacker code can then periodi-
cally observe how many of its lines are evicted and infer the
number of cache misses the victim process is experiencing.
The attacker can further use this information to infer the size
of the victim’s working set, i.e., the number of cache lines in
the subcache currently belonging to the victim.

This cache occupancy channel is the only side-channel
leakage that is not mitigated by the HYBCACHE construc-
tion, which is inherently available in any cache architecture
where the attacker and the victim processes compete for en-
tries in shared cache resources. It can only be effectively
blocked by strict cache partitioning, which we deliberately
do not provide in the HYBCACHE construction. This allows
different isolation domains to still compete for cache entries,
thus preserving maximum and dynamic cache utilization and
unaffected performance for non-isolated execution, as our per-
formance evaluation shows in Section 6.1. Note that, due to
S2, the information inferred by the attacker from observing
this remaining leakage, is effectively reduced to only knowing
the working set size at any point in time.

Leveraging this side channel to infer further information
and mount an attack in typical settings is not trivial. The vic-
tim may evict its own lines when it experiences cache misses
due to the random replacement policy. This would not effect
a difference in the cache state for the attacker, which compli-
cates the attacker’s bookkeeping. Moreover, observations are
severely hindered when any other software is concurrently
running besides the attacker and the victim processes. Finally,
standard software hardening techniques can be applied to
mitigate attacks to code implementations that are particularly
sensitive to this attack. Furthermore, exploiting this side chan-
nel to leak data has not been shown in practice. A recent
attack [67] leverages the cache occupancy side channel to
infer which website is open in a different browser tab (under
the strong assumption that no other tabs are open); however,
it does not leak any user data. Cache activity masking is
suggested as one of the countermeasures to the attack. Imple-
menting cache activity masking for HYBCACHE is feasible
and independent of our cache architecture.

Since the attacker aims to maximize its information and
cannot observe cache hits, s/he can attempt to evict all sub-
cache entries in order to maximize the number of misses expe-
rienced by the victim. As we discuss later, evicting the whole
subcache takes time for an attacker in either the NI-Domain
or in a I-Domain. An unprivileged attacker is unable to pause
the victim’s execution; thus, the attacker can only measure the



cache usage with limited granularity. However, a privileged
adversary, like a malicious OS in the case of an SGX enclave,
can stop and restart the victim arbitrarily and leverage tools
like SGX-Step [12] to observe the victim’s cache usage with
fine granularity. HYBCACHE does not mitigate such an attack
by construction. However, mitigating it is only possible by
strict cache partitioning and the resulting performance costs.
We emphasize that we make an intentional design decision
in HYBCACHE to allow isolation domains to dynamically
compete for cache entries for maximum cache utilization and
unaffected performance for non-isolated execution. A HYB-
CACHE construction that dynamically allocates a dedicated
subcache for each isolation domain would block this leakage
and mitigate attacks that rely on it.

Non-isolated Attacker Process. If the attacker process is
in the NI-Domain, in order to guarantee eviction of the whole
subcache it must fill up all ways in every cache set, includ-
ing the subcache ways. Therefore, the attacker process must
construct an eviction set that is as large as the entire cache
capacity. A typical data L1 cache holds 512 cache entries.
In our experiments, probing (accessing and measuring ac-
cess latencies) of 512 cache lines takes approximately 30 000
CPU cycles, i.e., a little over 8 ps.z For larger caches, such
as the LLC, it is not even feasible to mount Prime+Probe
attacks by probing the entire cache. The adversary is required
to pinpoint a few cache sets that correspond to the relevant
security-critical accesses made by the victim and monitor
these only [54].

Isolated Attacker Process. If the adversary is in a differ-
ent [-Domain than the victim process, it still cannot control
cache eviction of particular target addresses specifically. Both
attacker and victim processes are isolated and can only use
the subcache ways. Thus, an adversary aiming to perform
controlled eviction can only try to evict the entire subcache.
Because the subcache is fully-associative with random re-
placement, evicting the entire subcache requires an eviction
set much larger than the subcache capacity. We argue below
that this is not easier than probing the entire L1 cache (in
case the attacker is non-isolated), for instance, even though
the subcache is significantly smaller. Moreover, it can be only
guaranteed up to a certain level of probabilistic confidence.
This can be represented statistically by the coupon collector’s
problem, where coupons are represented by entries in the sub-
cache. Let Nyccesses e the total number of accesses needed
to evict all the subcache entries n and n; be the number of
accesses needed to evict the i-th way after i-1 ways have been
evicted. Both N, cesses and n; are discrete random variables.
The probability of evicting a new way becomes w The

2We ran this experiment on an Intel i7-4790 CPU clocked at 3.60 GHz.

expected value and variance of Njccesses are
2

V(Naccesxes) ~ % : n2

H,, denotes the n™ harmonic number. For n = 128 subcache
entries, an average of 695 memory accesses (each mapping
to a different 64B cache line) is needed to evict the subcache
with a variance of ~ 26 951. This is comparably more than
the 512 accesses required to probe the entire typical L1 cache
if the attacker process is not isolated (see above). Moreover,
with such a large variance, significant variations in the number
of Nyccesses required are expected from the mean E(Nyccesses)
every time this eviction process is repeated.

]E(Nuccessex) =n- Hn

6 Evaluation

Cache Size Associativity Sets
L1 64 KB 8-way associative 128
L2 256 KB 8-way associative 512
L3 4MB 16-way associative 4096

TABLE 1: Cache hierarchy used in our evaluation

Mix Components
pov+mct povray, mcf
lib+sije libquantum, sjeng
gob+mecf gobmk, mcf
ast+pov astar, povray
h26+gob h264ref, gobmk
bzit+sje bzip2, sjeng
h26+per h264ref, perlbench
cal+gob calculix, gobmk

pov+tmcf+h26+gob  povray, mcf, h264ref, gobmk
lib+sje+gob+mct libquantum, sjeng, gobmk, mcf

TABLE 2: Benchmark mixes used in our evaluation

HYBCACHE is architecture-agnostic and applicable to x86,
ARM or RISC-V. We performed our performance evaluation
of HYBCACHE on a gem5-based [9] x86 emulator. We evalu-
ated the hardware overhead for an RTL implementation that
we implemented to extend an open-source RISC-V processor
Ariane [62]. For our prototyping, we applied HYBCACHE to
L1, L2, and LLC. We describe our evaluation results next.

6.1 Performance Evaluation

To evaluate HYBCACHE, we chose eight mixes of programs
from the SPEC CPU2006 benchmark suite, which are used in
the literature’ [36,76], shown in the upper part of Table 2.

3 [76] also uses a ninth mix, dea+pov, which fails to run on gem5.

125



Two-Process Mixes. In order to evaluate the impact of iso-
lating one process in the context of an SMT processor, we
configure gemS5 to simulate two processors connected to a sin-
gle three-level cache hierarchy, whose parameters are shown
in Table 1. The caches have the latencies used in [76].

For each mix, we first isolate one process, then the other,
and we compare the performance of those processes to a third
run in which neither process is isolated. We make either 2 or
3 of ways per set usable by the isolated execution processes.
The replacement policy for non-isolated processes is LRU.
Like in [76], we let gem5 simulate the first 10 billion instruc-
tions of each process in order to let the process initialize,
then we measure the performance of one additional billion
instructions. We measure the performance overhead as the
relative change in the instructions-per-cycle (IPC), i.e., the
ratio between instructions executed and CPU cycles required.
A positive overhead represents a decrease in performance.

Figure 4 reports the IPC overhead of each program when
running in isolation mode, while the other member of the mix
runs in normal mode, for 2 or 3 isolated ways. The geometric
mean of the positive overheads is 4.95% with 2 isolated ways
and 3.47% with 3 isolated ways, with maximum overheads
of 16% and 14% respectively for the cal+gob mix. For this
mix, the overhead is due to a significantly increased L3 cache
miss rate: the data miss rate jumps from 0.6% to 17.6%,
while the instruction miss rate increases from 2.1% to 9.0%.
The working set of calculix normally fits in L3 [36] but it
does not in the subcache, hence the higher overhead. Since
HYBCACHE is meant to protect only sensitive applications,
which can be expected to be short-lived and only constitute
a minority of the workload of a system, we consider those
overheads easily tolerable. Figure 5 reports the IPC overhead
for the member of the mix that is not isolated. In all cases the
IPC overhead is not positive, i.e., the IPC is equal or better
than the baseline, thus showing that HYBCACHE does not
degrade the performance of non-isolated processes.

Four-Process Mixes. To demonstrate scalability, we also

ran four-process mixes, shown in the bottom part of Table 2.

We configured gem5 with four cores; two cores share an L1
and L2 cache, the other two cores share one additional L1
and L2, while L3 is shared by all cores. Isolated execution
can use two ways per set. We isolated each member of the
two mixes (the first eight bars in Figure 6), while the other
three processes were running normally. Each isolated process
has an overhead similar to that reported in the two-process
mix experiments in Figure 4. Moreover, we also isolated two
processes in each mix (last two columns in Figure 6). In this
case, we measured increased overheads by up to 2 additional
percentage points due to the additional competition for the
subcache. However, those overheads are still easily tolerable
given the security benefits and that they are only incurred by
the isolated execution.

126

15.0% A 21w
s 31w

o

©

2 10.0% A

—

o

>

o

O 5.0%

) I I I
— T T T T T T
S >0 oabae>EHo0oORswaTg cC
9] = = 0 %] LN o ©
EAYIESICEETLaldsyd
+ +tpw+ + + + + -0 Ef++ap E
>u._wmu_l—>\omN—\‘DQ:_| )
oL - OCUVWORNQOUVN I
o O=<>ITH I o005

FIGURE 4: IPC overhead of each isolated process when 2 or
3 ways are available to isolated execution. Each pair of bars
refers to a specific 2-process mix: the uppercase benchmark
is isolated and the other is not.

0.00% - I—I
-1.00% A
-2.00% A

21w
-3.00% 7 mem 31w

IPC Overhead

T3L2083588 L8 L8
EBvYIESRfedyradsd

T + +
T rtow+ ++ 3+ F 0 + + ;
> W = HFow = koan—‘“occ—lo
o0 - OO0 VWO NN LI
a = O=<*>ITH I aoUO

FIGURE 5: IPC overhead of each process when the other
member of the mix is isolated. Each pair of bars refers to a
specific 2-process mix: the uppercase benchmark is isolated
and the other is not.

©

Q

X
A

o

:

X
A

IPC Overhead
NA
S 8
> S
) )

o

S

X
A

LIB SJE GOB MCF POV MCF H26 GOB SJE POV
sje lib lib lib mcf pov pov pov MCF MCF
gob gob sje sje h26 h26 mcf mcf lib h26
mcf mcf mcf gob gob gob gob h26 gob gob

FIGURE 6: IPC overhead of isolated processes for 4-process
mixes. The uppercase benchmarks are isolated and the others
are not. The last two columns have two bars each since two
process are isolated.



Risolatea  NAND2X1 Gates Memory Overhead (Kb)

32 6114 0.34

64 12219 0.68

128 24563 1.3

256 48796 2.75

512 97830 5.5

1024 201792 11

2048 458300 22

TABLE 3: Logic and memory overhead estimates for fully-
associative lookup of 46-bit addresses for different numbers
of isolated cache ways (in any cache level).

6.2 Hardware and Memory Overhead

HYBCACHE requires additional hardware and memory for
the fully-associative lookup of the subcache entries. We im-
plemented the RTL for HYBCACHE and evaluated it for the
hardware overhead for different number of isolated cache
ways as shown in Table 3, irrespective of which cache levels
this is applied to. While the overhead of the additional hard-
ware is non-negligible, it is reasonable for a fully-associative
cache lookup. Nevertheless, it diminishes in perspective with
an 8-core Xeon Nehalem [1] of 2,300,000,000 transistors, for
example. The logic overhead of HYBCACHE for 2048 fully-
associative ways lookup is estimated at 1,833,200 transistors
(NAND2X1 count x 4) which is 0.07% overhead to the Xeon
Nehalem. For an 8-way 128-set cache, the memory overhead
in our PoC for fully-associative mapping is 7 additional tag
bits + 4 IDID bits per cache way. With respect to access la-
tencies, the exact timing latency of lookups will eventually
depend on the circuit routing but, in principle, for a paral-
lel content-addressable memory lookup (as in our hardware
PoC), accesses are performed in 2 clock cycles.

7 Discussion

Design and Implementation Aspects. HYBCACHE relies
on a random-replacement cache policy combined with full-
associativity to provide its dynamic isolation guarantees. The
implementation of the random replacement policy is dele-
gated to the hardware designer and considered an orthogonal
problem. Cryptographically-secure pseudo-random number
generators (CSPRNG) or even true hardware random number
generators can be used and the seed can be changed as often
as required. The output of the CSPRNG cannot be predicted
if it is seeded with secret randomness at the start of every pro-
cess. When the seed is changed, re-keying management tasks
such as cache flushing and invalidation for the re-mapping
are not required, unlike in recent architectures [63,74]. This
is because in HYBCACHE the randomness is only used for
selection of the victim cache line, and not for locating exist-
ing cache lines in the subcache. Furthermore, we emphasize

that CSPRNG design and implementations are an orthogonal
problem to our work.

The "soft" cache partitioning of HYBCACHE is a generic
concept and can be applied, in principle, to any set-associative
structure. In this work, we apply it to the L1, L2, and L3
(LLC) caches, but it can also be applied selectively to only
some of these cache levels or to the TLB as well, or to only
some cache levels in only one or more cores in a multi-core
architecture that become dedicated for allocating isolated ex-
ecution. The choice of which cache structures to apply this to
and how many ways to isolate in the subcache is delegated
to the hardware designer, given that it is a more complex de-
sign decision with other metrics and trade-offs that come into
play such as the size of the structure, power consumption,
and logic overhead. The power consumption and timing over-
heads associated with building and routing a fully-associative
cache lookup in VLSI are significant, but can be alleviated
by leveraging emerging hybrid memory technologies such as
DRAM-based caches [48] and STT-MRAM caches [30,31].
In practice, applying HYBCACHE to the LLC or larger caches
in general would be more expensive (in terms of hardware)
than L1 and L2 caches, and strict partitioning might be ap-
plied instead for the LLC. Nevertheless, HYBCACHE can
be, in principle, applied to sliced Intel LLCs. In each slice,
a number of cache ways (subcache) is reserved for isolated
execution. Any mapping from the IDID to the LLC slices
can be used, such that lines from a particular IDID are allo-
cated to a specific slice. Fully-associative lookups are thus
only be performed on the subcache portion of a single slice,
thus reducing the performance overheads and allowing scal-
ing to high-core-count processors. The slice-mapping would
be based only on the IDID, and thus it would not leak any
information about the data address or value.

Other design decisions in HYBCACHE include the number
of bits designated for IDID and thus the maximum number of
concurrent isolation domains supported (see Section 4.4). To
support more isolation domains (not concurrently) than the
hardwired maximum, the cache lines of one domain can be
flushed by the kernel or microcode at context switching while
the next domain is switched in and is re-assigned the available
IDID. Nevertheless, supporting too many isolation domains
will result in increased cache utilization, and the overall per-
formance will suffer. This is in line with conventional cache
behavior, but is aggravated in HYBCACHE because isolated
execution is only allowed to utilize the subcache portion.
However, this violates our working assumption A2 that only
the minority of the workload requires cache-level isolation.

We emphasize that cache-based side-channel leakage di-
rectly results from the design of the cache microarchitecture
and, thus, it is reasonable to investigate the fundamental mi-
croarchitectural designs of caches for upcoming processor
designs. While this does not address the problem for legacy
systems, it provides an exploratory ground of ideas for upcom-
ing processor designs. HYBCACHE is architecture-agnostic

127



and can be integrated with any processor architecture (we
simulated it for x86 and implemented it for RISC-V). It is
also compliant with any set-associative cache architecture in-
dependent of its hierarchy and organization, and whether it is
virtually or physically indexed since no indexing is involved.

Intra-Process Isolation Support. HYBCACHE can also
be extended, in principle, to provide fine-grained run-time
configuration of the isolation domain within a process, e.g.,
between different threads within the same process. Besides
kernel support, this requires an instruction extension to en-
able isolation of particular code regions or threads to different
IDIDs or disable isolation altogether at run-time (reset its
run-time IDID to all-zero). However, this requires the devel-
oper to identify and annotate security-sensitive code regions.
Nevertheless, this is useful in practice since a process might
not require cache-based side-channel resilience for its entirety
but only for sensitive code such as cryptographic computa-
tions. This is a more generalizable approach that is easier and
more directly applicable than implementing leakage-resilient
variants for security/privacy-sensitive computations.

Deployment Assumptions. HYBCACHE assumes any TEE
or trusted computing environment that is leveraged in compli-
ance with their original design intent, i.e., that the much larger
portion of the execution workload is not security-critical and
only a smaller portion is security-critical and isolated in an
I-Domain (A2). Otherwise, if the workload is equally bal-
anced, the isolated execution subset would be restricted to a
smaller partition of the cache and would incur a more than
tolerable performance degradation especially if it is cache-
sensitive. For HYBCACHE to be optimally advantageous, the
workload distribution and allocation must be performed by
the administrator such that the right balance of overall security
and performance is achieved, as shown by the performance
results in Section 6.1.

8 Related Work

We describe next the state of the art in existing defenses and
their shortcomings that HYBCACHE overcomes.

8.1 Partitioning

Cache partitioning allocates to each process or security do-
main a separate partition of the cache, hence guaranteeing
strict non-interference. Both software-based [20, 40,51, 82]
and hardware-based [24,41,72,73] partitioning schemes have
been proposed in recent years, where partitioning is either
process-based or region-based.

Process-based partitioning. Godfrey [20] implements
process-based cache partitioning using page coloring on Xen,
which incurs a prohibitive performance overhead with increas-
ing number of processes. SecDCP [72] is a way-partitioning
scheme where each application is assigned a security class
and cache partitioning between the security classes is dynam-

128

ically managed according to the cache demand of non-secure
applications. SecDCP is not scalable; selective cache flushing
and repartitioning is required if the number of security classes
exceeds that of allocated partitions and it may perform worse
than static partitioning. Furthermore, both schemes do not
support the use of shared libraries. CacheBar [82] periodically
configures the maximum number of ways allocated to each
process which unfairly impacts performance and cache uti-
lization, and does not scale well with the number of security
domains. DAWG [41] partitions the caches where different
processes are assigned to different protection domains isolat-
ing cache hits and misses. The aforementioned schemes incur
the performance overhead for the entire code, whereas HYB-
CACHE only enables side-channel resilience and the resulting
performance overhead only for the isolated execution.

Sanctum [14] protects TEEs by flushing private caches
whenever the processor switches between enclave mode and
normal mode and partitioning of the LLC and assigning to
each enclave a static number of sets. Sets allocated to an
enclave can be used exclusively by the enclave and cannot be
utilized by the OS. On the contrary, HYBCACHE allows for
a flexible and dynamic sharing of cache resources between
processes (thus improving performance), while preserving
cache side-channel resilience for isolated execution.

Many cache partitioning and allocation schemes [37,55,
64, 65,75] have been proposed that focus on cache alloca-
tion mechanisms aiming to improve performance for multi-
core caches. However, such schemes do not provide security
guarantees. HYBCACHE addresses the security/performance
trade-off by providing a configurable means to enable the side-
channel resilience only for isolated execution while providing
non-isolated execution with unaltered performance.

Region-based partitioning. These approaches split the
cache into a secure partition reserved for security/privacy-
critical memory pages and a non-secure partition for the
remaining memory pages. STEALTHMEM [40] uses page
coloring where several pages are colored and reserved for
security-sensitive data and they remain locked in cache. CAT-
alyst [51] leverages Intel’s CAT (Cache Allocation Technol-
ogy) [3] to divide the cache into secure and non-secure par-
titions and uses page coloring within the secure partition to
isolate different processes’ cache accesses to these pages.
PLcache [73] locks cache lines and allocates them exclusively
to particular processes such that the cache line can only be
evicted by its process. However, overall performance and
fairness of cache utilization are strongly impacted as the pro-
tected memory size increases in relevance to the total cache
capacity. Moreover, with PLcache an attacker process may
still infer the victim’s memory accesses by observing that it
is unable to access or evict cache lines (locked by a victim
process) from a particular cache set.

Cloak [24] uses hardware transactional memory, such as In-
tel TSX [2], to protect sensitive computations by pre-loading
the security-critical code and data into the cache at the begin-



ning of the transaction and any cache line evictions are de-
tected by the transaction aborting. Cloak incurs prohibitively
high performance overhead for memory-intense computations
and requires the developer’s strong involvement to identify
and instrument security-sensitive code and split it into sev-
eral transactions. Recent works have also explored the LLC
inclusion property for defense schemes such as RIC [39] and
SHARP [76]. However, both are architecture-specific, RIC
requires coherence protocol modifications and cache flushing
on thread migration, while SHARP requires modifications to
the clflush instruction. HYBCACHE, however, is architecture-
agnostic, and does not require cache flushing or modifications
to coherence protocols or the clflush instruction.

8.2 Randomization

Introducing randomization involves introducing noise or de-
liberate slowdown to the system clock to hinder the accuracy
of timing measurements as in FuzzyTime [32] and Time-
Warp [57]. These techniques can only defeat attacks which
rely on measuring access latency, but cannot prevent other
attacks such as alias-driven attacks [28]. They compromise
the precision of the clock for the remaining workload, thus
affecting functionality requirements.

RPCache [73] randomizes the mapping of all memory lines
of a protected application at a per-set granularity from their
actual cache set to a randomly mapped cache set, by using a
permutation table. NewCache [53] randomizes the mapping at
a per-line granularity using a Random Mapping Table. Both
RPCache and NewCache schemes do not scale well with
the number of lines in the cache (not applicable for larger
LLCs) and the number of protected domains. Random Fill
Cache [52] mitigates only reuse-based cache collision attacks
by replacing deterministic fetching with randomly filling the
cache within a configurable neighborhood window whose
size impacts the performance degradation incurred. It does
not scale well with an increasing TEE size.

Time-Secure Cache [69] uses a set-associative cache in-
dexed with a keyed function using the cache line address and
Process ID as its input. However, a weak low-entropy index-
ing function is used, thus re-keying is frequently required
followed by cache flushing which requires complex manage-
ment and impacts performance. CEASER [63] also uses a
keyed indexing function but without the Process ID, thus also
requiring frequent re-keying of its index derivation function
and re-mapping to limit the time interval for an attack. A con-
current work, ScatterCache [74], uses keyed cryptographic
indexing that depends on the security domain, where cache
set indexing is different and pseudo-random for every domain
but consistent for any given key. Thus, re-keying may still
be required at time intervals to hinder the profiling and ex-
ploitation efforts of an adversary attempting to construct and
use an eviction set to collide with the victim access of inter-
est. HYBCACHE, on the other hand, leverages randomization

by disabling set-associativity altogether and using random
replacement for isolated execution. Every given memory ad-
dress can be cached in any of the available subcache ways and
placement is random and unpredictable; it varies randomly
every time the same memory line is brought in cache.

9 Conclusion

In this paper, we proposed a generic mechanism for flexi-
ble and "soft" partitioning of set-associative memory struc-
tures and applied it to multi-core caches, which we call Hy-
BCACHE. HYBCACHE effectively thwarts contention-based
and access-based cache attacks by selectively applying side-
channel-resilient cache behavior only for code in isolated
execution domains (e.g., TEEs). Meanwhile, non-isolated ex-
ecution continues to utilize unaltered and conventional cache
behavior, capacity and performance. This addresses the persis-
tent performance/security trade-off with caches by providing
the additional side-channel resilience guarantee, and the re-
sulting performance degradation, only for the security-critical
execution subset of the workload (usually isolated in a TEE)
by eliminating the fundamental causes of these attacks. We
evaluated HYBCACHE with the SPEC CPU2006 benchmark
and show a performance overhead of up to 5% for isolated
execution and no overhead for the non-isolated execution.

Acknowledgments

We thank our anonymous reviewers for their valuable and con-
structive feedback. We also acknowledge the relevant work
of Tassneem Helal during her bachelor’s thesis. This work
was supported by the Intel Collaborative Research Institute
for Collaborative Autonomous & Resilient Systems (ICRI-
CARS), the German Research Foundation (DFG) through
CRC 1119 CROSSING P3, and the German Federal Ministry
of Education and Research through CRISP.

References

[1] INTEL. Intel Xeon Processors. https://www.intel.com/
content/www/us/en/products/processors/xeon.html,
2009.

[2] INTEL. Intel 64 and IA-32 Architectures Software De-
veloper’s Manual. https://www.intel.com/content/
dam/www/public/us/en/documents/manuals/64-1a-32-
architectures-software-developer-instruction-
set-reference-manual-325383.pdf, 2016.

[3] INTEL. Introduction to Cache Allocation Tech-
nology in the Intel Xeon Processor E5 v4 Family.
https://software.intel.com/en-us/articles/

introduction-to-cache-allocation-technology,
2016.

[4] Reading privileged memory with a side-channel.
https://googleprojectzero.blogspot.com/2018/

129



(]

(6]

(7]

(8]
(9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

130

01/reading-privileged-memory-with-side.html,

2018.

Onur Aciigmez, Cetin Kaya Kog, and Jean-Pierre Seifert. On
the power of simple branch prediction analysis. ACM Sympo-
sium on Information, computer and communications security,
pages 312-320, 2007.

Onur Acii¢gmez, Cetin Kaya Kog, and Jean-Pierre Seifert. Pre-
dicting secret keys via branch prediction. Cryptographers’
Track at the RSA Conference, pages 225242, 2007.

ARM Limited. ARM Security Technology — Build-
ing a Secure System using TrustZone Technol-
ogy. http://infocenter.arm.com/help/topic/
com.arm.doc.prd29-genc-009492¢c/PRD29-GENC-
009492C_trustzone_security_whitepaper.pdf, 2009.

Daniel J Bernstein. Cache-timing attacks on aes. 2005.

Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K.
Reinhardt, Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R.
Hower, Tushar Krishna, Somayeh Sardashti, Rathijit Sen, Ko-
rey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D. Hill, and
David A. Wood. The Gem5 Simulator. SIGARCH Computer
Architecture News, 39(2), 2011.

Joseph Bonneau and Ilya Mironov. Cache-collision Timing
Attacks Against AES. In International Conference on Crypto-
graphic Hardware and Embedded Systems (CHES). Springer-
Verlag, 2006.

Ferdinand Brasser, Urs Miiller, Alexandra Dmitrienko, Kari
Kostiainen, Srdjan Capkun, and Ahmad-Reza Sadeghi. Soft-
ware Grand Exposure: SGX Cache Attacks Are Practical.
In USENIX Workshop on Offensive Technologies (WOOT).
USENIX Association, 2017.

Jo Van Bulck, Frank Piessens, and Raoul Strackx. SGX-step.
In Proceedings of the 2nd Workshop on System Software for
Trusted Execution - SysTEX’17. ACM Press, 2017.

Victor Costan and Srinivas Devadas. Intel SGX Explained.
Technical report, Cryptology ePrint Archive. Report 2016/086,
2016. https://eprint.iacr.org/2016/086.pdf.

Victor Costan, Ilia A Lebedev, and Srinivas Devadas. Sanctum:
Minimal hardware extensions for strong software isolation. In
USENIX Security Symposium, pages 857-874, 2016.

Craig Disselkoen, David Kohlbrenner, Leo Porter, and Dean
Tullsen. Prime+Abort: A Timer-free High-precision L3 Cache
Attack Using Intel TSX. In USENIX Security Symposium,
2017.

Goran Doychev and Boris Kopf. Rigorous Analysis of Soft-
ware Countermeasures Against Cache Attacks. In SIGPLAN
Conference on Programming Language Design and Implemen-
tation (PLDI). ACM, 2017.

Goran Doychev, Boris Kopf, Laurent Mauborgne, and Jan
Reineke. CacheAudit: A Tool for the Static Analysis of Cache
Side Channels. In USENIX Security Symposium. ACM, 2013.

Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-
Ghazaleh. Jump over ASLR: Attacking branch predictors
to bypass ASLR. [EEE/ACM International Symposium on
Microarchitecture, 2016.

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

(32]

Dmitry Evtyushkin, Ryan Riley, Nael CSE Abu-Ghazaleh,
Dmitry Ponomarev, et al. BranchScope: A New Side-Channel
Attack on Directional Branch Predictor. ACM Conference
on Architectural Support for Programming Languages and
Operating Systems, pages 693-707, 2018.

Michael Godfrey. On The Prevention of Cache-Based Side-
Channel Attacks in a Cloud Environment. Master’s thesis,
Queen’s University, Ontario, Canada, 2013.

Johannes Goétzfried, Moritz Eckert, Sebastian Schinzel, and
Tilo Miiller. Cache Attacks on Intel SGX. In European Work-
shop on Systems Security, 2017.

Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida.
Translation Leak-aside Buffer: Defeating Cache Side-channel
Protections with TLB Attacks. In USENIX Security Sympo-
sium, 2018.

Ben Gras, Kaveh Razavi, Erik Bosman, Herbert Bos, and Cris-
tiano Giuffrida. ASLR on the Line: Practical Cache Attacks on
the MMU. In Annual Network and Distributed System Security
Symposium (NDSS), 2017.

Daniel Gruss, Julian Lettner, Felix Schuster, Olga Ohrimenko,
Istvan Haller, and Manuel Costa. Strong and Efficient Cache
Side-channel Protection Using Hardware Transactional Mem-
ory. In USENIX Security Symposium. USENIX Association,
2017.

Daniel Gruss, Clémentine Maurice, Anders Fogh, Moritz Lipp,
and Stefan Mangard. Prefetch Side-Channel Attacks: Bypass-
ing SMAP and Kernel ASLR. In ACM SIGSAC Conference on
Computer and Communications Security (CCS). ACM, 2016.

Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan
Mangard. Flush+Flush: A Fast and Stealthy Cache Attack.
In International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment (DIMVA). Springer-
Verlag, 2016.

Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. Cache
Template Attacks: Automating Attacks on Inclusive Last-level
Caches. In USENIX Security Symposium, 2015.

Roberto Guanciale, Hamed Nemati, Christoph Baumann, and
Mads Dam. Cache Storage Channels: Alias-Driven Attacks
and Verified Countermeasures. In IEEE Symposium on Security
& Privacy (IEEE S&P), 2016.

David Gullasch, Endre Bangerter, and Stephan Krenn. Cache
Games — Bringing Access-Based Cache Attacks on AES to
Practice. In IEEE Symposium on Security & Privacy (IEEE
S&P), 2011.

Xiaochen Guo, Engin Ipek, and Tolga Soyata. Resistive Com-
putation: Avoiding the Power Wall with Low-leakage, STT-
MRAM Based Computing. In International Symposium on
Computer Architecture (ISCA). ACM, 2010.

F. Hameed, A. A. Khan, and J. Castrillon. Performance and
Energy-Efficient Design of STT-RAM Last-Level Cache. /IEEE
Transactions on Very Large Scale Integration (VLSI) Systems,
2018.

Wei-Ming Hu. Reducing Timing Channels with Fuzzy Time.
In IEEE Computer Society Symposium on Research in Security
and Privacy, 1991.



[33]

[34]

[35]

[36]

[37]

[38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

Intel. Intel Software Guard Extensions. Tutorial slides.
https://software.intel.com/sites/default/files/
332680-002.pdf. Reference Number: 332680-002, revision
1.1.

Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. S§A: A
Shared Cache Attack That Works across Cores and Defies VM
Sandboxing — and Its Application to AES. In IEEE Symposium
on Security & Privacy (IEEE S&P), 2015.

Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. Cross
Processor Cache Attacks. In ACM Symposium on Information,
Computer and Communications Security (ASIACCS). ACM,
2016.

Aamer Jaleel, Eric Borch, Malini Bhandaru, Simon C.
Steely Jr., and Joel Emer. Achieving Non-Inclusive Cache
Performance with Inclusive Caches: Temporal Locality Aware
(TLA) Cache Management Policies. In Proceedings of the
2010 43rd Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO ’43, pages 151-162, Washington,
DC, USA, 2010. IEEE Computer Society.

Aamer Jaleel, William Hasenplaugh, Moinuddin Qureshi,
Julien Sebot, Simon Steely, Jr., and Joel Emer. Adaptive Inser-
tion Policies for Managing Shared Caches. In International
Conference on Parallel Architectures and Compilation Tech-
niques (PACT). ACM, 2008.

Mehmet Kayaalp, Nael Abu-Ghazaleh, Dmitry Ponomarev, and
Aamer Jaleel. A High-resolution Side-channel Attack on Last-
level Cache. In IEEE/ACM Design Automation Conference
(DAC). ACM, 2016.

Mehmet Kayaalp, Khaled N. Khasawneh, Hodjat Asghari Esfe-
den, Jesse Elwell, Nael Abu-Ghazaleh, Dmitry Ponomarev, and
Aamer Jaleel. RIC: Relaxed Inclusion Caches for mitigating
LLC side-channel attacks. In IEEE/ACM Design Automation
Conference (DAC), 2017.

Taesoo Kim, Marcus Peinado, and Gloria Mainar-Ruiz.
STEALTHMEM: System-level Protection Against Cache-
based Side Channel Attacks in the Cloud. In USENIX Security
Symposium. USENIX Association, 2012.

Vladimir Kiriansky, Ilia Lebedev, Saman Amarasinghe, Srini-
vas Devadas, and Joel Emer. DAWG: A Defense Against
Cache Timing Attacks in Speculative Execution Processors.
In IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2018.

Vladimir Kiriansky and Carl Waldspurger.
Buffer Overflows: Attacks and defenses.
arXiv:1807.03757,2018.

Helge Klein.  Modern multi-process browser architec-
ture. https://helgeklein.com/blog/2019/01/modern-
multi-process-browser-architecture/, 2019.

Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike
Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher,
Michael Schwarz, and Yuval Yarom. Spectre Attacks: Exploit-
ing Speculative Execution. arXiv preprint arXiv:1801.01203,
2018.

Speculative
arXiv preprint

Boris Kopf, Laurent Mauborgne, and Martin Ochoa. Auto-
matic Quantification of Cache Side-channels. In International

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

(58]

[59]

Conference on Computer Aided Verification (CAV). Springer-
Verlag, 2012.

Esmaeil Mohammadian Koruyeh, Khaled N Khasawneh,
Chengyu Song, and Nael Abu-Ghazaleh. Spectre Returns!
Speculation Attacks using the Return Stack Buffer. In USENIX
Security Symposium, 2018.

Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hye-
soon Kim, and Marcus Peinado. Inferring fine-grained control
flow inside sgx enclaves with branch shadowing. USENIX
Security Symposium, pages 16-18, 2017.

Y. Lee, J. Kim, H. Jang, H. Yang, J. Kim, J. Jeong, and J. W. Lee.
A Fully Associative, Tagless DRAM Cache. In International
Symposium on Computer Architecture (ISCA). ACM, 2015.

Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Mau-
rice, and Stefan Mangard. ARMageddon: Cache Attacks on
Mobile Devices. In USENIX Security Symposium, 2016.

Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher,
Werner Haas, Stefan Mangard, Paul Kocher, Daniel Genkin,
Yuval Yarom, and Mike Hamburg. Meltdown. arXiv preprint
arXiv:1801.01207, 2018.

Fangfei Liu, Qian Ge, Yuval Yarom, Frank Mckeen, Carlos
Rozas, Gernot Heiser, and Ruby B. Lee. CATalyst: Defeating
Last-Level Cache Side Channel Attacks in Cloud Comput-
ing. In IEEE International Symposium on High Performance
Computer Architecture (HPCA), 2016.

Fangfei Liu and Ruby B. Lee. Random Fill Cache Architecture.
In IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE Computer Society, 2014.

Fangfei Liu, Hao Wu, Kenneth Mai, and Ruby B. Lee. New-
cache: Secure Cache Architecture Thwarting Cache Side-
Channel Attacks. In IEEE/ACM International Symposium
on Microarchitecture (MICRO), 2016.

Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B.
Lee. Last-Level Cache Side-Channel Attacks Are Practical. In
IEEE Symposium on Security & Privacy (IEEE S&P), 2015.

Wanli Liu and Donald Yeung. Using Aggressor Thread Infor-
mation to Improve Shared Cache Management for CMPs. In
International Conference on Parallel Architectures and Com-
pilation Techniques (PACT), 2009.

Giorgi Maisuradze and Christian Rossow. ret2spec: Specula-
tive execution using Return Stack Buffers. In ACM SIGSAC
Conference on Computer and Communications Security (CCS),
2018.

Robert Martin, John Demme, and Simha Sethumadhavan.
TimeWarp: Rethinking Timekeeping and Performance Moni-
toring Mechanisms to Mitigate Side-channel Attacks. In Inter-
national Symposium on Computer Architecture (ISCA). IEEE
Computer Society, 2012.

Matt Miller. Mitigating arbitrary native code execution in
microsoft edge. https://blogs.windows.com/msedgedev/
2017/02/23/mitigating-/, Jun 2018.

Ahmad Moghimi, Thomas Eisenbarth, and Berk Sunar. Mem-
Jam: A false dependency attack against constant-time crypto
implementations in SGX. Cryptographers’ Track at the
RSA Conference, pages 21-44,2018. 10.1007/978-3-319~
76953-0_2.

131



[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

132

Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth.
CacheZoom: How SGX amplifies the power of cache attacks.
Technical report, arXiv:1703.06986 [cs.CR], 2017. https:
//arxiv.org/abs/1703.06986.

Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache Attacks
and Countermeasures: The Case of AES. In The Cryptogra-
phers’ Track at the RSA Conference on Topics in Cryptology
(CT-RSA), 2006.

Pulp-Platform. Ariane RISC-V CPU. https://github.com/
pulp-platform/ariane.

Moinuddin K. Qureshi. Ceaser: Mitigating Conflict-based
Cache Attacks via Encrypted-Address and Remapping. In
IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2018.

Moinuddin K. Qureshi and Yale N. Patt. Utility-Based Cache
Partitioning: A Low-Overhead, High-Performance, Runtime
Mechanism to Partition Shared Caches. In IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO). IEEE
Computer Society, 2006.

Daniel Sanchez and Christos Kozyrakis. Scalable and Ef-
ficient Fine-Grained Cache Partitioning with Vantage. In
IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2012.

Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine
Maurice, and Stefan Mangard. Malware Guard Extension: Us-
ing SGX to Conceal Cache Attacks. In Detection of Intrusions
and Malware, and Vulnerability Assessment (DIMVA), 2017.

Anatoly Shusterman, Lachlan Kang, Yarden Haskal, Yosef
Meltser, Prateek Mittal, Yossi Oren, and Yuval Yarom. Robust
website fingerprinting through the cache occupancy channel.
CoRR, abs/1811.07153, 2018.

Adrian Tang, Simha Sethumadhavan, and Salvatore Stolfo.
CLKSCREW: exposing the perils of security-oblivious energy
managemen. In USENIX Security Symposium, 2017.

David Trilla, Carles Hernandez, Jaume Abella, and Fran-
cisco J. Cazorla. Cache Side-channel Attacks and Time-
predictability in High-performance Critical Real-time Systems.
In IEEE/ACM Design Automation Conference (DAC). ACM,
2018.

Jo Van Bulck, Frank Piessens, and Raoul Strackx. Foreshadow:
Extracting the Keys to the Intel SGX Kingdom with Transient
Out-of-Order Execution. USENIX Security Symposium, 2018.

Stephan Van Schaik, Cristiano Giuffrida, Herbert Bos, and
Kaveh Razavi. Malicious Management Unit: Why Stopping
Cache Attacks in Software is Harder Than You Think. In
USENIX Security Symposium, 2018.

[72]

(73]

[74]

[75]

[76]

(771

(78]

(791

[80]

[81]

[82]

Yao Wang, Andrew Ferraiuolo, Danfeng Zhang, Andrew C.
Myers, and G. Edward Suh. SecDCP: Secure Dynamic
Cache Partitioning for Efficient Timing Channel Protection.
In IEEE/ACM Design Automation Conference (DAC). ACM,
2016.

Zhenghong Wang and Ruby B. Lee. New Cache Designs for
Thwarting Software Cache-based Side Channel Attacks. In
International Symposium on Computer Architecture (ISCA).
ACM, 2007.

Mario Werner, Thomas Unterluggauer, Lukas Giner, Michael
Schwarz, Daniel Gruss, and Stefan Mangard. ScatterCache:
Thwarting Cache Attacks via Cache Set Randomization. In
USENIX Security Symposium, 2019.

Yuejian Xie and Gabriel H. Loh. PIPP: Promotion/Insertion
Pseudo-partitioning of Multi-core Shared Caches. In Interna-
tional Symposium on Computer Architecture (ISCA). ACM,
2009.

Mengjia Yan, Bhargava Gopireddy, Thomas Shull, and Josep
Torrellas. Secure Hierarchy-Aware Cache Replacement Policy
(SHARP): Defending Against Cache-Based Side Channel At-
acks. In International Symposium on Computer Architecture
(ISCA). ACM, 2017.

Mengjia Yan, Read Sprabery, Bhargava Gopireddy, Christo-
pher W. Fletcher, Roy Campbell, and Josep Torrellas. At-
tack Directories, Not Caches: Side Channel Attacks in a Non-
Inclusive World. To appear in the Proceedings of the IEEE
Symposium on Security & Privacy (IEEE S&P), May 2019.

Yuval Yarom and Katrina Falkner. FLUSH+RELOAD: A
High Resolution, Low Noise, L3 Cache Side-channel Attack.
In USENIX Security Symposium, 2014.

Yuval Yarom, Daniel Genkin, and Nadia Heninger.
CacheBleed: a timing attack on OpenSSL constant-time RSA.
volume 7, pages 99-112. Springer, 2017.

Ning Zhang, Kun Sun, Deborah Shands, Wenjing Lou, and
Y. Thomas Hou. TruSpy: Cache Side-Channel Information
Leakage from the Secure World on ARM Devices. Cryptology
ePrint Archive, Report 2016/980, 2016. https://eprint.
iacr.org/2016/980.

Yinqgian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ris-
tenpart. Cross-VM Side Channels and Their Use to Extract
Private Keys. In ACM SIGSAC Conference on Computer and
Communications Security (CCS). ACM, 2012.

Zigiao Zhou, Michael K. Reiter, and Yingian Zhang. A Soft-
ware Approach to Defeating Side Channels in Last-Level
Caches. In ACM SIGSAC Conference on Computer and Com-
munications Security (CCS). ACM, 2016.



CFINSIGHT:
A Comprehensive Metric for CFI Policies

Tommaso Frassetto, Patrick Jauernig, David Koisser, and Ahmad-Reza Sadeghi
Technical University of Darmstadt
tommaso.frassetto @trust.tu-darmstadt.de, patrick.jauernig@trust.tu-darmstadt.de,
david.koisser @trust.tu-darmstadt.de, ahmad.sadeghi @trust.tu-darmstadt.de

Abstract—Software vulnerabilities are one of the major threats
to computer security and have caused substantial damage over
the past decades. Consequently, numerous techniques have been
proposed to mitigate the risk of exploitation of vulnerable pro-
grams. One of the most relevant defense mechanisms is Control-
Flow Integrity (CFI): multiple variants have been introduced
and extensively discussed in academia as well as deployed in the
industry. However, it is hard to compare the security guarantees
of these implementations as existing metrics (such as AIR) do not
consider the different usefulness to the attacker of different basic
blocks, which are the fundamental components that constitute
the code of any application.

This paper introduces BLOCKINSULATION and CFGINSU-
LATION, novel metrics designed to overcome this limitation by
modeling the usefulness of basic blocks for an attacker trying to
traverse the program’s control-flow graph. Moreover, we propose
a new CFI policy generator, named NumCFI, which is orthogonal
to existing policy generators and prevents the attacker from
taking shortcuts from vulnerable code to a system call instruction.
We evaluate NumCFI, as well as a number of other CFI policy
generators, using BLOCKINSULATION, CFGINSULATION, and
existing metrics. Lastly, we describe L+TCFI, our implementation
that combines NumCFI and an existing label-based policy, with
a performance overhead of just 1.27%.

I. INTRODUCTION

Since their invention, computer systems have become re-
sponsible for increasingly complex tasks. As a result, computer
programs have become increasingly complex as well. Due
to this complexity and the presence of legacy code, most
modern software projects are plagued by several security
vulnerabilities. A number of approaches have been suggested
to find these security vulnerabilities, including software testing,
fuzzing, and formal methods. However, proving that software
is free from vulnerabilities is only feasible for small programs.
Thus, researchers have proposed a number of strategies that
aim to mitigate vulnerabilities in running programs.

These run-time mitigations are usually based on one of
two principles: either preventing the adversary from learning
some information that is necessary to perform an attack, or
inserting additional checks in the program to make an attack
impossible. An example of the former, which is currently

Network and Distributed Systems Security (NDSS) Symposium 2022
24-28 April 2022, San Diego, CA, USA

ISBN 1-891562-74-6

https://dx.doi.org/10.14722/ndss.2022.23165
www.ndss-symposium.org

deployed in most operating systems, is Address Space Layout
Randomization (ASLR) [37], which randomizes the memory
layout of a program and hides it from the adversary. An
example of the latter, also widely adopted in the software
industry, is Control-Flow Integrity (CFI) [2], which ensures
that a part of a program can only transfer control to a different
part if this transfer was intended by the programmer.

This paper is focused on CFI, whose main idea is to add
checks to all indirect control flow transfer instructions, i.e.,
machine instructions that transfer control to a dynamically-
computed address. CFI allows each of these instructions to
only transfer control to a subset of targets, according to a
control-flow graph (CFG). Since its introduction by Abadi et
al. in 2005 [2], CFI has been the focus of a large corpus
of research works. There are many variants with different
granularity and based on either hardware or software. Given
the number of different approaches, it is important to be
able to compare them in terms of both performance overhead
and effectiveness against memory-corruption attacks. While
there is a widely accepted metric to compare their perfor-
mance overhead, i.e., the run time overhead of the execution
of a standard benchmark, there is no single metric that is
widely recognized by the community to compare the security
protection provided by different approaches. The best-known
metric is Average Indirect-target Reduction (AIR) [55], which
is defined as the average reduction of allowed targets across
every indirect control flow transfer instruction (the higher the
better). However, AIR is not a good metric to compare different
policies [51], as most CFI papers that rely on AIR report
similar values greater than 99% [6]. Yet, even implementations
with very high AIR are still vulnerable [13], [21]: in other
words, missing even less than 1 percentage point in AIR is
enough to perform attacks. Hence, AIR is not a good instru-
ment to distinguish between and compare CFI approaches.
After AIR, a number of other metrics, including AIA [18],
QuantitativeSecurity [6], and CTR [34], have been proposed,
as we discuss in Section IX. However, they all share a major
shortcoming: they do not consider the usefulness of different
basic blocks to construct an attack, instead only considering
their quantity. Hence, there is a need for a new approach that
leverages not only local information regarding single basic
blocks, but also their position and connectivity in the full CFG.
In this paper, we introduce CFINSIGHT, a new CFI evaluation
methodology and framework that achieves that.

CFINSIGHT. A very important building block for a run-
time attack is the possibility to invoke a system call with
controlled parameters. This is useful, e.g., to start a new

133



malicious process or to change the memory protection settings.
Performing a system call is also the only way to exfiltrate
files or further compromise the machine, and is used in real-
world exploits [10]. Hence, our CFI evaluation framework
CFINSIGHT is based on the assumption that the attacker found
a vulnerable basic block and wants to perform a controlled
system call. Usually, many blocks containing system call
instructions exist in the program: some are unreachable from
the vulnerable block, while others can be reached using a
number of different paths through the CFG. We construct a
novel metric, CFGINSULATION, which considers the number
and length of these paths from a basic block to a system call,
and quantifies how easy it is for an attacker to build an exploit.
We model a number of CFI policy generators: a theoretical
perfect one, generators based on matching function types or
number of arguments, and a generator that allows transfers to
any valid function. We show that we can apply CFINSIGHT
to the generated policies and compute their CFGINSULATION
to compare them, showing how CFGINSULATION allows to
distinguish between policies with very similar AIR.

NumCFI. Moreover, we leverage the data generated by
CFINSIGHT to define and evaluate a new CFI policy generator,
dubbed NumCFI. NumCFI assigns each basic block a tag,
which is the length of the shortest path from the block to a
system call instruction, and it enforces the property that a block
with tag ¢ can only call blocks with tag > t—1. In other words,
any attack that starts in a basic block and requires a system
call needs to go through as many basic blocks as the shortest
legal path from the starting node to a system call instruction;
the attacker cannot “take shortcuts,” but has to go through
the specified number of basic blocks instead. We show that
NumCFI has a comparable or better CFGINSULATION than a
type-based policy generator, and that combining them leads to
significant improvements over either one. We demonstrate that
this combination is practical with a prototype implementation,
which we call L+TCFI, and show that it has a very low run-
time overhead (1.27% on benchmarks of the SPEC CPU2017
suite).

Contributions. In this paper we make the following contri-
butions:

e We describe, design, and implement a novel CFI evalua-
tion framework, CFINSIGHT, based on measuring expres-
sive properties of the CFGs of real programs, instead of
simply counting reachable basic blocks. We plan to open
source CFINSIGHT so it can be useful to the community.

e We apply CFINSIGHT to better compare the relative secu-
rity characteristics of multiple state-of-the-art CFI policy
generators, using our new CFI metric, CFGINSULATION.
We compare CFGINSULATION with four existing CFI
metrics.

o We leverage the knowledge generated by CFINSIGHT to
define a new CFI policy generator, NumCFI, and show
that it significantly improves the security guarantees of
other widely used CFI policy generators.

o We design a generic CFI implementation, L+TCFI, which
can be used to enforce a combination of NumCFI with
a classic label-based CFI, and we show that it has a
very low run-time overhead (1.27% on benchmarks of
the SPEC CPU2017 suite).

134

The rest of the paper is organized as follows: Section II
introduces a number of topics that are required to understand
the rest of the paper; Section III describes our approach and our
metrics; Section IV describes our analyzer, which computes
these metrics; Section V applies the analyzer to a number
of existing CFI policy generators and discusses the resulting
metrics; Section VI describes NumCFI; Section VII adds
NumCeFI to our analysis; Section VIII describes and evaluates
our CFI implementation L+TCFI; Section IX discusses related
works and Section X concludes the paper.

II. BACKGROUND

This section introduces control-flow graphs, run-time at-
tacks and control-flow integrity.

A. Control-Flow Graphs

A control-flow graph (CFG) is a directed graph repre-
senting the control flow of a program. It consists of nodes,
which represent the basic blocks in the program, and edges
representing legal transitions from one basic block to another.
A basic block is a contiguous sequence of instructions that does
not have any internal branch: branch instructions can only be
the last instruction of a basic block, and instructions targeted
by a branch can only be the first instruction of a basic block.
CFGs (and the basic blocks they contain) are a popular abstrac-
tion used to analyze computer programs. However, generating
CFGs is not trivial. They can be generated either statically or
dynamically. Static generation leverages compiler passes (or
an equivalent for binaries) to decide based on the observed
instruction whether a new basic block is formed or if there is a
transition from one basic block to another. These transitions are
caused by branches. Determining all the possible destinations
of a branch is hard in practice, as a common construct
used in programs are indirect jumps. Indirect jumps get their
target from a register, hence, this target cannot be resolved
statically in the general case, but only approximated. While
modern techniques like symbolic execution can help to solve
this problem, the generated CFG is still an approximation in
practice. In contrast, dynamic approaches monitor the behavior
of the program at run time. Hardware features like Intel PT
or debugging functionality allow to extract the actual targets
of indirect jumps. Nonetheless, this approach also cannot fully
solve the problem, as dynamic approaches can only monitor
the control flow for taken branches. Since the information
observed depends on the program’s input, a large set of inputs
might be needed to generate a close-to-perfect CFG, which can
be achieved through the use of automated testing (fuzzing) or
a test suite.

B. Run-time Attacks

Run-time attacks have been a persistent threat for modern
computing platforms for more than three decades. These
attacks exploit vulnerabilities in software to achieve arbitrary
code execution. Memory corruption attacks have a long-
standing history. The very first attacks exploited buffer over-
flows in memory to inject new code into the data section and
execute it later, which effectively added a new node to the
CFG. However, these attacks were still primitive, and easy to
mitigate. By introducing a write-xor-execute (W®X) policy,
attackers could no longer inject executable data, stopping



code injection attacks altogether. This mitigation has been
deployed broadly, and is most prominently known as Data
Execution Prevention (DEP). Although this mitigation raised
the bar, attackers found new strategies to bypass these defenses
using more sophisticated attacks that do not add nodes to the
CFG, but add new paths between existing nodes, hence called
code-reuse attacks. Code-reuse attacks can be categorized
into full-function reuse attacks (e.g., return-to-libc [49]) and
return-oriented programming (ROP) [45], [9]. ROP uses small
sequences of instructions to form gadgets, which can be used
as building blocks to mount a more complex attack or achieve
Turing-complete computation. While simple defenses like
Address-Space Layout Randomization (ASLR) were deployed
in real systems, ROP remains challenging to prevent, especially
since code-reuse attacks can be combined with information
leakage (e.g., the JIT-ROP attack [48]). These enhanced attacks
spawned advanced defenses both in hardware and software.
Prominent examples of defenses are Control-Flow Integrity
(CFI) [2], [12], [19], [3], Code-Pointer Integrity (CPI) [28],
or sophisticated randomization techniques [11], [48]. Some
defenses are already deployed in products, e.g., Microsoft’s
Control-Flow Guard (CFGuard), Clang’s CFI [30] which is
used in Google Chrome, Intel’s Control-flow Enforcement
Technology (CET) [25] and ARM’s Pointer Authentication
(PAC) [41]. Due to the progressive adoption of some of these
defenses, a more advanced type of attack has been introduced
in the academic world. In a Data-oriented Programming (DOP)
attack [24], [26], non-control data is manipulated to reuse
valid paths under CFI to achieve Turing-complete computation.
While schemes like Data-Flow Integrity [8], [50] solve this
theoretically, they come at a significant performance and
hardware overhead. As a result, solving this problem remains
challenging in practice.

C. Control-Flow Integrity

Control-Flow Integrity relies on the fact that most functions
in a program only call a very limited subset of the other
functions. Given a CFG of a program, a CFI implementation
instruments the code such that only these transfers are allowed,
and any attempt to deviate from the CFG is detected. Only
function calls that compute their target at run time, i.e.,
indirect function calls, are potentially vulnerable and need to
be instrumented; direct function calls have a hard-coded target
that cannot be changed at run time. A context-insensitive CFI
policy specifies, for every indirect function call site, which
other functions can legitimately be called from that site. A
context-sensitive CFI policy considers not only the identity of
the call site and the callee, but also other criteria, like the
value of a variable or the top of the call stack, in order to
decide whether an indirect call is legal. Moreover, the call to
a function (forward edge) is not the only one that needs to be
protected, the return (backward edge) needs it too [7], e.g., in
the form of a shadow stack [5], a data structure keeping secure
copies of return addresses.

Deploying CFI poses a number of challenges. One such
challenge is overapproximation of the allowed control flow
transfers, which is mostly introduced in the name of perfor-
mance. A precise run-time instrumentation needs to check if
a specific target is allowed for the specific caller, which can
be relatively slow. Thus, most CFI policy generators introduce
overapproximations in order to streamline the checks and make

R 1\
\ .y G >» H
c —-""_- \_/\_
int (*p)(int); [-------T_____
p(42); > K

mprotect();

Complex Function
(safe)

Fig. 1. A CFG for a simple program with a corruptible pointer.

them faster. A common method to simplify CFI checks is
to assign a single numeric label to every indirect caller and
callee and check that the label of the caller matches that of
the callee. This effectively splits the nodes into equivalence
classes, one for each label, and allows the run-time check to
be a simple (and fast) integer comparison. As an example, a
CFI implementation can label functions according to the return
type and type of the parameters [38]. However, it introduces
overapproximation because unrelated nodes need to have the
same label in order for the scheme to work, i.e., it is not
possible to distinguish between targets in the same equivalence
class. This overapproximation has been shown to be sufficient
to attack protected programs [13], [17]. In practice, most
of the deployed CFI implementations use either type-based
policies [30] or simple heuristics, like checking whether the
callee address is the beginning of a function [32].

A recent trend is to add hardware support for CFI [25],
[29], improving performance and providing better integrity
protection for the CFI mechanism itself.

III. CFINSIGHT

We begin our description of CFINSIGHT by looking at
the sample CFG in Figure 1. In this program, basic block
C contains a function pointer p which can be corrupted by
the adversary. The adversary can leverage this vulnerability to
launch a code-reuse attack, and wants to reach block S, which
contains an invocation to the system call mprotect. If the
adversary can reach this block and control the parameters to
the system call, it is trivial to disable memory protection and
then perform a classic code injection attack. If the program
is not protected by CFI, the adversary can simply redirect the
control flow to block S using edge (0) and then perform the
rest of the attack. However, if the program is protected by CFI,
only CFG edges allowed by the CFI policy can be followed;

135



as a result, the attacker is limited to these allowed edges. In
the case of a perfect CFI policy (which only allows black
solid edges from Figure 1), the only path to S goes through a
complex function, which we assume to be implemented with
secure programming techniques: as a result, it is likely that the
attacker can only invoke the system call using safe parameters
and, hence, cannot launch the attack.

Real-world CFI implementations, however, are not perfect,
as we mention in Section II-C, and often use overapproximated
policies, i.e., they allow edges that should be forbidden.
The impact of this overapproximation on the security of the
program depends on which illegal edge is incorrectly allowed.
As an example, if edge (D) is allowed, the adversary gains no
advantage, since the only path to S still goes through the safe
function. If one of the edges @ and @ is included, the attacker
can instead jump to J or G and follow more nodes until the
control flow reaches S.

From the perspective of existing metrics, like AIR [55],
AIA [18], or CTR [34], a policy that includes edge (D is
equivalent to one that includes edge (2), or one that includes
(@), as they allow the same number of edges starting from
C. However, they are not equivalent in practice. If only (1
is allowed, the attacker has no advantage over a perfect CFI,
since there is no additional path to S. If only (2) is allowed,
the attacker has a substantial advantage: the attacker can jump
to J and then follow the flow to M and S. Lastly, if only () is
allowed, the attacker still has an advantage, but smaller than the
previous case: The attacker must jump to G and try to follow
the chain all the way to S. In order for this to be successful,
the adversary needs to ensure that the desired branch to K is
taken in G, instead of the branch to H (similarly in K, with the
branch to M). Which branch is taken depends on a condition,
which could be out of the attacker’s control.

The purpose of CFINSIGHT is to compare CFI policies
considering their graph structure and connectivity. We focus
on context-insensitive CFI policies, since most CFI policies
deployed in practice fall in this category [2], [30], [25];
however, our approach can also be applied to context-sensitive
CFI policies, as we discuss in Section IV-D. For each indirect
function call, we measure the quantity and length of possible
paths that lead to a system call instruction.

In the following, we first describe our threat model, then
we explain how our metric is defined and how we compute it.

A. Threat Model and Assumptions

With CFINSIGHT we aim to model how most run-time
attacks start in the real world. Thus, we make the following
assumptions about the victim program and the capabilities of
the adversary:

AQ The adversary wants to attack a vulnerable program.
More concretely, the goal of the adversary is to invoke a
system call with controlled parameters, e.g., to start a new
malicious process or to change the memory protection
settings. Performing a system call is the only way to
exfiltrate files or further compromise the machine, and
is used in real-world exploits [10].

A1 The adversary has access to a vulnerability in the program
that allows arbitrary read operations to readable memory
and arbitrary write operations to writable memory.

136

A2 The adversary can leverage the arbitrary write primitive
to corrupt the memory such that an indirect call will be
redirected to an unintended target. As an example, this can
be done in the presence of a buffer overflow vulnerability.
The adversary can corrupt pointers and hijack the control
flow multiple times. If a CFI policy is in place, all of the
hijacked calls need to comply with the CFI policy.

A3 We assume W@X (see Section II-B) to be in place
and working, i.e., the adversary cannot overwrite the
application code or inject new code.

A4 We assume that a shadow stack implementation [5], or
equivalent, is deployed on the victim, hence, the attacker
cannot target the function returns. Protecting function re-
turns is a very different problem than protecting function
calls, and this paper is focused on the latter.

A5 We assume the adversary to be able to bypass any
randomization-based defense in use, e.g., ASLR; thus, we
do not consider them in our model.

A6 In principle, our approach can be applied to any operating
system. However, a number of low-level details differ
between them. Hence, we focus on Linux, in line with
related work [6], [7], [16], [17].

A7 We expect the victim program to be built using the current
best practices for Linux software, e.g., full RELRO [47],
which makes the Procedure Linkage Table (PLT) read-
only. Thus, the attacker cannot overwrite PLT entries.

B. Our Observations: Single-Node Metric

In CFINSIGHT, we aim to define quantifiable properties
of a graph that measure how easily an attacker can build a
successful attack. We begin by considering a given node in the
CFG that calls a vulnerable code pointer, and a specific system
call site the adversary needs to reach. To reach this goal, the
adversary needs to follow a number of CFG edges, which
need to be legal according to the current CFI policy. Let us
consider one such path. Each basic block on this path contains
machine instructions, which perform a number of operations,
and ends with a (possibly conditional) branch instruction. As
a result, traversing each basic block poses two challenges for
the adversary. First, if the branch is conditional, the adversary
needs to make sure the value of the branch condition is true if
the branch is to be taken, or false otherwise. Second, the code
in the basic block often writes data to memory or to a register;
this might overwrite some data the adversary prepared for the
attack, e.g., a parameter of the system call or the operand of
a branch condition. Our first observation follows:

O1 The more basic blocks an attack needs to traverse, the
harder the attack is.

However, there usually are multiple paths between a node
and a system call site. The attacker only needs one path that
supports an attack, and hence:

02 The more paths are available for an attack, the higher the
likelihood that at least one of them is viable for the attack.

We leverage these observations to build our metric to
measure the effectiveness of CFI policies. As a first approxi-
mation, our metric is the ratio between the length of paths to
any system call, and the number of these paths. Our metric
is directly proportional to the length of the paths, due to



Observation Ol, and inversely proportional to their number,
due to Observation O2; higher values of the metric indicate
that the attack is harder. However, this approximation needs to
be refined to be applicable in practice. First, there are multiple
paths of varying lengths starting in a given node and ending in
some system call site; since it is not computationally feasible
to examine all paths in a complex CFG, we consider instead
the lower bound of their lengths, i.e., the shortest path from the
node to any system call. Second, it is also infeasible to know
the exact number of paths from a given node to a system call;
a useful approximation is to consider the number of linearly
independent paths, which can be computed efficiently’.

The result is our metric that quantifies the difficulty of an
attack starting in a basic block b and reaching any system call
site. We call this metric BLOCKINSULATION(b) and we define
it as:

length of shortest path b — syscall
Ne linearly independent paths b — syscall

If there is no path between b and any system call site,
we define BLOCKINSULATION(b) = oo, since any attack is
impossible in this case.

C. Whole-Program Metric

In general, considering the whole distribution of values
of BLOCKINSULATION of all basic blocks gives the most
complete picture. However, it can also be useful to define
a single numeric metric to summarize the distribution of the
BLOCKINSULATION. Simply averaging the values is imprac-
tical, since the metric we defined can assume values from ~ 0
to oo. We instead decide to take the median value of the
distribution, which is often a finite value. If more than half of
the values are co and the median is infinite, we instead take the
maximum finite value. A greater value of CFGINSULATION
indicates a program that is harder for an attacker to exploit.

CFINSIGHT leverages this new metric to compare the
security guarantees of different CFI policy generators.

IV. CFINSIGHT ANALYZER

In the previous section we introduced a metric to measure
the security guarantees of a CFI policy. In Figure 2 we show
the overall design of the analyzer we designed to compute this
metric. Each component is described in detail below.

A. CFG Generation

In order to compute our metric for a program we need
its CFG. As we explain in Section II-A, there are two main
approaches to generate a CFG: either through dynamic or
static analysis. Both approaches have different advantages and
limitations. While we consider the problem of enhancing CFG
generation techniques to be orthogonal to the scope of this
paper, the quality of our analysis does depend on the quality
of the CFG it uses. Hence, we leverage both approaches: we
trace a number of executions of the program on a set of inputs
and we also perform a static analysis of the program.

I'The number of linearly independent paths in a graph, also known as Mc-
Cabe’s cyclomatic complexity [31], can be easily computed as |E| — |N| + 2,
where |E| is the number of edges and |N| the number of nodes of the graph.

Program Source Code
Inputs Program Binary
'd N F t N\
Dynamic Static lilr,lc zon
Analyzer Analyzer A ylp
L ) \_Analyzer |
. Type
Unified CFG .
Information
[ Overapproximated CFG Generator ]
G, G, G, G,
[ Metric Evaluator ]

Fig. 2. Architecture of the CFINSIGHT analyzer.

©

insn2
insn3
insn4
insn5
call fun

insn4
insn5
call fun

Fig. 3. Depending on the target of the jump instruction in block C (dashed
blue edge), two different pairs of basic blocks are generated: A+B or D+E.

We then combine the CFGs generated by these tools into a
single unified CFG for the program under analysis. Combining
multiple CFGs is not trivial, since different tools can split
a binary into different sets of basic blocks. As an example,
Figure 3 shows two different CFGs generated for the same
program. Assume that the jump instruction in block C can
legally jump to either insn2 or insn4, and that different tools
generate CFGs which only contain one of these edges each.
As a result of the different edges, in the CFG on the left the
code is split resulting in blocks A and B, while in the CFG
on the right the split results in blocks D and E.

While it is easy to determine whether an instruction termi-
nates a basic block (any branch instruction does), determining
where a basic block starts is more complex. By definition, a
basic block is a sequence of instructions that will be always
executed one after another. Since the tools often generate dif-

137



insn0

insnl

Limp$reg |y v

call fun

Fig. 4. Merging the graphs of Figure 3. Left: decomposition of the basic
blocks in single instructions. Right: recomposed basic blocks.

ferent sets of edges, and since the way instructions are grouped
into blocks depends on the known edges, different tools (and
concrete executions on different inputs) often produce different
basic block sets for the same instructions.

We address the problem by splitting all basic blocks into
instructions, building a list of all edges on the instruction level
(see left side of Figure 4). We then find the new basic block
boundaries based on all known edges for the program (right
side of Figure 4), thus generating a unified CFG.

In order to make the next steps more straightforward, we
add an additional node to the CFG, called target, which sym-
bolizes the attacker’s goal. In our attacker model (Assumption
AQ), the adversary’s goal is to reach a system call, so we add
an edge from any block containing a system call to target.

B. Overapproximating the CFG

Once we obtain a unified CFG for a program, we need to
model the effect of the various CFI polices on the program. As
we mentioned in Section II-C, CFI policy generators introduce
overapproximations in order to simplify their construction or
improve their performance. For each generated CFI policy p,
we model its effect on a program’s CFG and generate a list
of edges that are not present in the CFG but are allowed by
the policy. We then add these edges to the original CFG and
generate G?, i.e., the graph of all allowed control flow transfers
under policy p.

We model a number of CFI policy generators used in
widely deployed mitigation schemes, as well as the lack of

SoFCFI a CFI policy generator that allows all functions to
be the target of any indirect function call, similarly to
what can be done with Intel CET [25];

TypeCFI a CFI policy generator that only allows indirect
function calls if the type signature of the callee matches
the type expected at the caller side, like RAP [38];

NumArgCFI a simplified variant of TypeCFI, which only
checks that the number of arguments of the callee matches

138

the number provided at the caller side. This policy gen-
erator is an idealized version of TypeArmor [53];

NoCFI the absence of CFI can be modeled by a policy that
allows each indirect call site to call any other basic block?
in the binary.

In order to compute SoFCFI, we only need the addresses of
the functions, which we can extract from the symbols in the
binary. For TypeCFI and NumArgCFI, we additionally need
type information. We extract the types of functions from the
debug symbols, while we leverage a custom compiler pass to
extract the expected function type at the indirect call sites.

C. Computing Our Metric

Once we generate the overapproximated graph GP for a
policy p, we can use it to compute BLOCKINSULATION (see
Section III-B). The first step is to compute, for every indirect
call site b, the subgraph containing all paths to target (see
Section IV-A). Since we are only interested in nodes that have
a path to target, i.e., its ancestors, we focus only on them
for efficiency reasons. We compute the set of ancestors by
performing a depth-first search, starting in target, in a copy
of the graph where all edges are reversed. Afterwards, for
each indirect call site b, we perform a depth-first search, only
considering the ancestor nodes we found before. The nodes
found in this search compose the subgraph we wanted to build.
After this subgraph is known, our metric can be computed in
a straightforward manner.

The naive representation of the GP graphs in memory
is challenging, since naively representing some CFI policies
requires a large number of edges. As an example, in NoCFI,
any indirect call site can transfer control to any basic block (see
Section IV-B), which produces |I| x | N| edges for a CFG with
|7 indirect call sites and |N| basic blocks. In order to produce
a more tractable representation of this graph, we introduce a
synthetic node, called any. We then create an edge + — any for
every i € I, and an edge any — b for every b € N. This leads
to a graph with the same connectivity, with only |I| 4+ |N]|
edges, which is a substantially lower number. However, if
not accounted for, this optimization would lead to different
result for our metric. Hence, while computing our metric in
the presence of synthetic nodes, we take this difference into
account, in order to compute the value the metric would have?
in the naive version of the graph.

D. Extensions and Discussion

The framework is built in a modular way and it can easily
be extended. For example, an analyst can add an additional
CFG generator, mark further blocks as the attacker’s target, or
model a new CFI policy generator. In particular, CFINSIGHT
can also be extended to consider a context-sensitive CFI policy
(see Section II-C). Representing a context-sensitive CFI policy

’In a variable-length instruction set like x86, in the absence of CFI, the
attacker can also jump in between instructions; we do not consider this in our
model, since the adversary does not need this possibility to very easily reach
a system call (without CFI).

3A synthetic node with i incoming and j outgoing edges represents the
fact that each of these 7 predecessors can reach any of the j successors. As
a result, these 7 + j edges in the graph actually represent ¢ X j edges. We
then adjust the edge count by adding ¢ x j — (¢ + j) and the node count by
subtracting one.



requires having multiple nodes in the CFG for the same basic
block, one for each context. Our methods can then be applied
to this extended CFG.

In the presence of a multi-threaded application, CFIN-
SIGHT considers each thread separately. As a result, it does
not directly model an attack where two or more threads
are exploited at the same time and collaborate to perform a
system call. However, in this case, we focus on the thread that
performs the system call. Its control flow needs to reach a
system call site, starting from a legitimate block; as a result,
our analysis still applies.

V. CFINSIGHT: IMPLEMENTATION AND RESULTS

In this Section we describe our CFINSIGHT implementa-
tion and we present its results.

A. Analyzer: Implementation Notes

We implemented our prototype of the CFINSIGHT analyzer
as a number of Python scripts, totaling approximately 4 000
lines of code.

We compile all binaries with the Clang compiler (version
11.0.1), which we extend with a custom IR pass to pro-
duce a list of expected function types at indirect call sites
(see Section IV-B). For our static analysis we use the angr
framework [46], which can generate the CFG of a program
using static analysis and symbolic execution. For our dynamic
analysis we choose CFGgrind [43], a Valgrind-based tool that
dynamically records control flow transitions as they happen
during program execution. In angr, we generate both a fast and
an emulated CFG, while in CFGgrind we generate a separate
CFG for every input file; all of them are then combined into
a unified CFG, like we explain in Section IV-A. We extract
the function types for TypeCFI from DWARF debug symbols,
which encode the types of the functions (together with other
information) in the binary itself. We decode this data in our
DWAREF parser, which is based on pyelftools [4]. We also
retrieve the detached debug symbols for the system libraries
from the Debian package manager, then we decode them with
our DWARF parser.

The most processing-intensive part of the analysis pipeline
is the evaluation of the metrics on an overapproximated graph.
Since this evaluation is mostly independent for each basic
block, we split the work between multiple threads (up to the
number of CPU cores available), while the main thread is
responsible for collecting the results.

B. Results

In this section, we report the results of our CFINSIGHT
framework on state-of-the-art CFI policy generators. In Sec-
tion VII, we compare these metrics with our novel CFI policy
generator NumCFI as well.

Experimental setup. In order to test CFINSIGHT and to
compare different CFI policy generators, we compute our
metrics for a number of benchmarks. From SPEC CPU2017,
the most recent version of a widely used benchmarking suite,
we select all benchmarks written in C, G+, or a mix of
the two, in their speed variant. For each benchmark, we
statically generate its CFG with angr and we use CFGgrind

" NoCFI ——— NumArgCFI —— TypeCFI
S —— SOFCFI
o
m 100% A
“—
o
& 75% -
i
c
Y 50% A
o
o
o/ 4
.02) 25%
o
o
g 0%- T T T ™ T T T T T
9 % 6 .5 A& 3 2 A
o 3107107 407 107 407 107 407 107 {0

BlockInsulation

Fig. 5. CDF of the distribution of BLOCKINSULATION of basic blocks
containing indirect calls, under different CFI policies.

to dynamically trace the execution; we use all input files that
compose the three SPEC workloads (test, train and refspeed).
Moreover, we prepare our own benchmark of the web server
nginx [1]: as inputs we use the official nginx test suite, which
is composed of 388 different configurations. We ran all tests
on a machine running Debian Sid, last updated in April 2021,
with a 32-core Intel Xeon Silver 4110 processor and 128 GB
of RAM.

BLOCKINSULATION. We evaluated BLOCKINSULATION for
every indirect call site in our benchmarks under four CFI
policy generators: NoCFI, SoFCFI, NumArgCFI, and Type-
CFI (in increasing order of strictness; we define them in
Section IV-B). In Figure 5, we visualize the distribution of
these metrics by plotting the Cumulative Distribution Func-
tion (CDF) of the BLOCKINSULATION over all indirect call
sites in all of our benchmarks*. Each point with coordinates
(z,y%) in these curves means that y% of the blocks have a
BLOCKINSULATION < z. Since greater values of BLOCK-
INSULATION indicate that attacks are harder to perform, a
curve that is lower and to the right of the figure indicates a
more secure CFI policy generator. As expected, the least secure
policy generator is NoCFI, followed by SoFCFI, NumArgCFI,
and lastly TypeCFIL.

CFGINSULATION. While we stress that a CDF of BLOCK-
INSULATION (like Figure 5) is the most complete way to
compare different policies, it is often useful to summarize
the results into a simpler numeric metric, which we introduce
in Section III-C. We define CFGINSULATION as the median
BLOCKINSULATION value for the indirect call sites of a
program (or the maximum finite value if the median is infinity).
Figure 6 shows the values of this metric for all benchmarks
we consider. For all benchmarks, the CFGINSULATION values
are in the expected order (TypeCFI, NumArgCFI, SoFCFI,
NoCFI). TypeCFI improves the CFGINSULATION by 3 to 7
orders of magnitude compared to NoCFI, by 1 to 5 orders
of magnitude compared to SoFCFI, and up to 3 orders of
magnitude compared to NumArgCFI.

4The graphs only show data about the main binaries. Our model also
considers the dynamic libraries, but we only use the information that can
be extracted from their binary and debug symbols, since compiling libraries
such as libc is a very complex process.

139



TABLE 1. COMPARISON OF CFI POLICY GENERATORS USING EXISTING METRICS AND CFGINSULATION.
CFI policy generator mean(fAIR)*  mean(fAIA)f sum(iCTR)T  geomean(QS)*  total CFGINSULATION*
NoCFI 0.00000% 6023518.4 324855240247 0.00000020 3.348766 - 10710
SoFCFI 99.94011% 4504.8 406122077 0.00040833 1.154559 - 1077
NumArgCFI 99.99284% 584.6 59811668 0.00233956 1.644561 - 1076
TypeCFIl 99.99720% 228.1 29684972 0.05289177 3.712601 - 1073
* Higher is better. T Lower is better.
[ NoCFI I SoFCFI B NumArgCFl I TypeCFl
1071 4
1072 4
g 1073 4
E 1074 +
3 1075 1
C
© 1076 4
[T
O 1077 4
1078 4
10_9 3

S S S S S S S S S s S S O 2\
NS Co & - Q- \'S: o7 0SS N 20 o A xOY
Q02 T2 o 40 A 0 O O T QO @0 e a0t g5l o9
e © © G oA 3 o
600 Ay PN o 2 2 ° 2y 9T (29 ©
(L3 ©
Benchmark

Fig. 6. CFGINSULATION for each benchmark we consider.

Other metrics. In order to validate our findings and compare
the results with other existing metrics, we compute a number
of CFI metrics over the same CFGs. Specifically, we compute:

e fAIR, the forward-edge variant of AIR [55]: the average
reduction in the number of allowed target for every
indirect function call (higher is better);

e a forward-edge variant of AIA [18] which we dub fAIA:
the average number of allowed targets for every indirect
function call (lower is better);

e iCTR [34]: the sum of the number of allowed targets for
every indirect function call (lower is better);

o QS (QuantitativeSecurity [6]), the product of the number
of equivalence classes and the inverse of the size of the
largest class (higher is better).

We compute all of these metrics for each of our bench-
marks. Since the metrics are defined in different ways, we
use different mathematical functions to summarize them. fAIR
and fAIA are defined as arithmetic means; hence, we report the
arithmetic mean of the individual results from the benchmarks.
iCTR is defined as a count, so we report the sum of the single
results; QS is a ratio, so we report its geometric mean. These
values, along with CFGINSULATION, are shown in Table I
The metrics confirm that TypeCFI offers more security than
NumCFI, which is better than SOFCFI and NumArgCFI. In
Section VII we extend this analysis with our novel CFI policy
generators NumCFI.

140

VI. NuMCFI

We mentioned earlier that existing CFI metrics, like AIR,
consider basic blocks with the same label equivalent to each
other, leading to the division of basic blocks in equivalence
classes. Our answer to this shortcoming is to propose CFIN-
SIGHT, which analyzes a CFI-protected program in terms of
how easy it is for an attacker to reach a system call instruction.
The core insight is that a node that is close to a system call
instruction (e.g., node J in Figure 1) is more useful to an
attacker than farther nodes (e.g., node G). The same insight
can be applied to produce a novel CFI policy generator as
well, which led us to the definition of NumCFI.

The idea of NumCFI is to assign each basic block a tag,
which is the number of basic blocks on the shortest path
from the block to a system call instruction. As an example,
Figure 7 shows the tags that NumCFI assigns to the program
in Figure 1, assuming the path within Complex Function to be
10 blocks long. At run time, we enforce the property that the
tag can decrease by at most 1 for every call, i.e., a block b can
call a block c only if their tags t;, t. satisfy this property:

te >ty —1 ey

This prevents the attacker from “taking shortcuts” when
planning an attack, i.e., if the attacker wants to hijack the
control flow in a block with tag t, the attack chain needs to
go through at least ¢ blocks before it reaches a system call



int (*p) (int);
p(42);

= D
=)

Y A 4

S
A 4

mprotect();
Complex Function

(safe)

Fig. 7. The same program of Figure 1, with the NumCFI tags for each block
in the blue circles. In this example we assume the path through the Complex
Function to be 10 blocks long.

instruction. Every basic block with no path to a system call
instruction receives a special tag oo, which only allows it to
transfer control to other blocks with the tag co. NumCFI can
also be combined with an orthogonal CFI policy generator
based on labels, e.g., TypeCFI. We name this combined policy
generator Num+TypeCFIL.

An interesting consequence of deploying NumCFI is that
it allows security analysts to focus their attention on a small
number of basic blocks with a low tag value, since they are
the blocks that the adversary might use to mount an attack.
Blocks with higher tag values can receive less attention, since
they would require long attack chains; blocks with tag oo
can be outright ignored, since they cannot reach system call
instructions at all.

Below, we discuss how NumCFI prevents the nginx at-
tack described in [17]. We then describe how NumCFI and
Num+TypeCFI compare with other policy generators in Sec-
tion VII. Lastly, we write an implementation of Num+TypeCFI
and we evaluate its performance overhead in Section VIII.

Case Study: Nginx. Farkhani et al. [17] construct an at-
tack on nginx, protected by type-based CFI implementation
RAP [38] The attack leverages a collision between func-
tions with the same type. Specifically, the code of function
ngx_worker_process_exit contains an indirect func-
tion call to a function that takes no arguments. The attack
leverages this fact to hijack the control flow and call a different
function, ngx_master_process_cycle, which also takes
no arguments; from there, the control flow eventually reaches
an invocation of the system call execve. We applied NumCFI
to nginx 1.16.1 compiled for x86_64 Linux and we verified
that the tags of these two basic blocks differ by more than
1, i.e., Equation (1) is not satisfied and this control flow is

NoCFI —— TypeCFl Num+TypeCFl
" —— SoFCFlI —— NumCFI —— StrictCFI
3 NumArgCFI
2 100% A
“
o
Y 75% A
8
c
S 50% -
o
a
¢ 25%
2
i)
E 0%- T T . T T T o T T T o
9 8 1 6 5 & 3 2 3 0
o 107407407 4074077407 407407407 10 10
Blockinsulation
Fig. 8. CDF of the distribution of BLOCKINSULATION of basic blocks

containing indirect calls, under different CFI policies.

disallowed. Hence, NumCFI protects nginx from the attack
described in [17].

A downside of all CFI implementations is that, if a valid
edge is missing in its input CFG, attempting to follow that
edge in the program will lead to a false-positive CFI violation.
For example, the authors of RAP [38], encountered missing
edges caused by incorrect type signatures in the source code
of programs. The issue of missing edges also presents itself
in NumCFI. The root cause of this issue is the well-known
difficulty of generating a precise CFG of a program. While
improving CFG generation techniques is outside of the scope
of this paper, there are ways to mitigate this issue. First,
one can combine multiple CFG generation approaches. In our
prototype implementation of CFINSIGHT, we combine angr
and CFGgrind as representatives of static and dynamic analysis
tools. However, any other more advanced static analysis tool
can be used as well. The dynamic analysis can be improved
by increasing the number and quality of the input files. Good
software engineering practices recommend the presence of a
test suite which is as thorough as possible. As a result, tracing
the execution of this comprehensive test suite ensures that
any tested functionality is covered in the generated CFG. The
coverage generated by the test suite can further be improved
with other techniques such as fuzzing. Finally, if the core
functionality of the program is covered by tests, any false
positive that is still present is by definition only incurred in
rare circumstances. These false positives can then be manually
addressed just like any other rare bug.

VII. CFINSIGHT: COMPARISON OF NUMCFI

In this section, we extend the results of Section V by
considering NumCFI as well. We use the same experimental
setup and benchmarks we describe in Section V. Due to an
imperfect CFG generation, for some indirect call sites we do
not know of any legal outgoing edge: in order to ensure a fair
comparison between policy generators, we omit these nodes
from the following analysis.

In addition to the existing CFI policy generators (TypeCFlI,
NumArgCFI, SoFCFI, NoCFI), we analyze NumCFI, our new

141



TABLE II

COMPARISON OF NUMCFI WITH OTHER CFI POLICY GENERATORS USING EXISTING CFI METRICS AND CFGINSULATION.

CFI policy generator mean(fAIR)* mean(fAIA)} sum(iCTR)T geomean(QS)*  total CFGINSULATION*
NoCFI 0.00000% (7) 6023518.4 (7) 75153429826 (7)  0.00000020 (7) 3.348766 - 1071° (7)
SoFCFI 99.94011% (6) 4504.8 (6) 83776616 (6) 0.00040833 (6) 1.161153 - 107°7 (6)
NumArgCFI 99.98757% (4) 1039.4 (4) 22424457 (4)  0.00197575 (4) 1.647973 - 10796 (5)
TypeCFI 99.99498% (3) 390.6 (3) 8077681 (3) 0.04507330 (3) 3.856191 - 107 (4)
NumCFI 99.95866% (5) 3055.5 (5) 60548479 (5) 0.00045113 (5) 2.184315-107°° (3)
Num+TypeCFI 99.99665% (2) 260.1 (2) 5615941 (2)  0.05484967 (2) 1.109534 - 107% (2)
StrictCFI 99.99996% (1) 2.0 (1) 10974 (1)  1.65245297 (1) 3.225806 - 107°2 (1)

* Higher is better. 1 Lower is better.

(The number in parentheses is the rank of each CFI policy generator according to each metric.)

. NoCFI s NumArgCFl m NumcCFlI I StrictCFI
I SoFCFI Il TypeCFl . Num+TypeCFl

107!

1072
c 1073
2
= 107
2 107
o
o 107°
o
O 1077

10°8

107°

S S S S S ) ) S S 3 ok )
o\ C “\C‘/ \\0((\/ ‘_99/ ((\\L/ ,L()A/ . e(\()/ (& o\ (\3‘0/ 1 L “g\(\ xo¢
Ao 6Q'L'Q’ 2 o((\(\e \3(\0‘0 613."\ 6395\ :\“\ag 6&&.\8 a0 o)

0. Q- b o 20

& G N 6
Benchmark
Fig. 9. CFGINSULATION for each benchmark we consider.

CFI policy generator, as well as Num+TypeCFI, which is
the combination of NumCFI and TypeCFI. Finally, we define
StrictCFI as a CFI policy that only allows legal edges, without
any overapproximation. StrictCFI serves as an indication of
the best possible context-insensitive CFI policy that can be
obtained for the binaries we consider.

BLOCKINSULATION. In Figure 8, we show the cumulative
distribution (CDF) of BLOCKINSULATION over the call sites.
As we mentioned earlier, curves that are lower and to the
right indicate more secure CFI policies. As expected, StrictCFI
is the most secure policy, since it does not introduce any
overapproximation. The BLOCKINSULATION of NumCFI is
approximately one order of magnitude greater than TypeCFI,
which is the best CFI policy generator currently deployed on a
large scale. Moreover, Num+TypeCFI combines the strengths
of both its components, further increasing the BLOCKINSU-
LATION by one order of magnitude.

CFGINSULATION. As we mentioned, the most expressive
way to compare two policies with the help of CFINSIGHT, is
to look at a CDF (like Figure 8). However, we also define a
numeric summary, CFGINSULATION. In Figure 9, we show
the CFGINSULATION values for every benchmark and every
CFI policy generator we consider.

The CFGINSULATION of NumCFI is approximately 5
times greater than TypeCFI considering all call sites together.

142

Considering the benchmarks separately, in six of them Num-
CFI has a higher CFGINSULATION than TypeCFI, while for
seven benchmarks TypeCFI has a higher CFGINSULATION.
The latter seven are the benchmarks with the lowest amount
of basic blocks and, hence, a distance-based CFI policy is less
effective for them. For more complex applications, like the
other six benchmarks, NumCFI shows a better performance
than TypeCFIL.

Moreover, Num+TypeCFI has a better CFGINSULATION
than TypeCFI in every benchmark. Considering all call sites
together, Num+TypeCFI has a CFGINSULATION which is
approximately 29 times greater than TypeCFI. For eight bench-
marks the improvement is at least tenfold.

Other metrics. We also compare NumCFI and
Num+TypeCFI using other the existing metrics we select in
Section V: fAIR [55], fAIA [18], iCTR [34] and QS [6]. We
report the value of these metrics in Table II. We also report,
in parentheses, the rank of every policy generator according
to each metric (1 marks the best and 7 marks the worst).

We can make a number of observations from Table II. First,
according to all metrics we examine (both our metrics and ex-
isting metrics), Num+TypeCFI outperforms both NumCFI and
TypeCFI, always ranking second after the baseline. Second,
all CFI policy generators have very high fAIR (above 99.9%),
proving the point that AIR is not an effective metric to evaluate



the security guarantees of CFI policies. Third, other metrics,
like fAIA, iCTR, and QS, show a more significant variation
between the policy generators we evaluate. However, they have
a disadvantage. They only consider the number of targets that
are reachable; yet, they neglect to take into consideration the
usefulness of the blocks for an attacker. BLOCKINSULATION
and CFGINSULATION overcome this limitation, taking into
account the usefulness of each basic block to the adversary.

VIII. L+TCFI

In the previous Section, we evaluate the security of a
number of CFI policy generators, including NumCFI and
Num+TypeCFI. This Section shows that the generated policies
can be implemented in an efficient way, with a low run-time
overhead.

To do so, we design L+TCFI, a generic CFI enforcement
mechanism. In L+TCFI, every basic block b has two prop-
erties, a label [, and a tag ;. The label is determined by
a label-based CFI policy generator like TypeCFI, while the
tag is determined by a distance-based policy generator like
NumCFI. The mechanism is designed to allow control flow
transfers between a block b and a block c¢ if and only if both
of these conditions are met:

te >ty —1 (D
l.=1 2

Ensuring the enforcement of these conditions requires two
components: 1) a way to encode the metadata (tags and labels)
in the program itself, and 2) a run-time component that decides
whether indirect jumps are allowed depending on the encoded
information. We discuss both of them in the following.

A. Metadata Encoding

A common strategy for CFI metadata encoding is to embed
it in the executable code itself. As an example, RAP [38]
inserts the metadata immediately before the beginning of every
function in the program. This way, when the run-time checker
needs to decide whether a jump to a pointer should be allowed,
it can simply read a fixed number of bytes before the pointer
and retrieve the metadata. We use this approach as well.

However, embedding metadata in the executable code must
be done carefully, in order to not introduce any incompatibility
or vulnerability in the application. We do this by embedding
our metadata inside of CFI marks. Our CFI marks are inter-
preted by the CPU as a nop instruction, which do not produce
any result (the name stands for “no operation”). The advantage
of embedding data in nop instructions is that, unlike raw data,
the processor can execute them without changing its state,
so they can be easily inserted into the code during the build
process.

On x86, nop instructions can have different lengths; we
choose the 9-byte variant because of its convenience for our
purposes. This longer variant of the nop instruction is achieved
by encoding information on various operands (register and
immediate), which are then ignored by the processor. For
our purposes, we can consider the leftmost four bytes of the

8 7 6 5 4 3 2 1 0

66 0f 1 84 a9 00|00 00 00|

label ta;
- g/

~
CFI mark

Fig. 10. A CFI mark which embeds metadata in a nop instruction.

instruction fixed (bytes 8 to 5 in Figure 10). The following
byte (4) has multiple legal values which do not influence
the behavior of the processor; we choose value 0x9a, since
it is different from the value in Intel’s recommended 9-byte
nop instruction and thus very unlikely to occur in any regular
code. The rightmost four bytes of the instruction (bytes 3 to 0
in Figure 10) can be set to any arbitrary value; we decide
to encode the label in bytes 3 to 1, and the tag in byte
0. This layout is advantageous for the run-time checker, as
Section VIII-B explains; it allows us to encode approximately
16 million labels and 256 tags, which is sufficient in our
testing. We encode tag oo as 255, any tag > 254 as 254,
and any other tag as itself.

We insert the CFI marks in the program by 1) instructing
the compiler to create an ELF section for every function, and 2)
using a custom linker script to insert these instructions between
them in the final binary. We insert the marks in assembly files
by rewriting them on the fly and adding the required instruction
before every function definition.

B. Run-time Checker

The run-time checker has the goal of examining every
indirect control flow transfer and decide whether it is allowed
or not according to the metadata. We instrument every indirect
control flow transfer by developing a custom pass for the Clang
C/C++ compiler. Our compiler pass, which was developed for
LLVM 11.0.1 and consists of approximately 60 lines of Ct+
code, finds all indirect function calls and instruments them
to check the target address before it is used. Our proof-of-
concept implementation does not embed checks in assembly
code, which is only a tiny portion of the application code.

The instrumentation code checks that the target address
is preceded by a valid CFI mark and that the tags and labels
are correct (satisfying Equations (1) and (2) respectively). This
can be done with just two comparisons: a single 64-bit equality
test can check the presence of a CFI mark and that the labels
match (2), while a 8-bit comparison can check whether the
target label is greater than the threshold (1).

C. Security Considerations

The goal of L+TCFI is to allow an indirect call if and
only if Equations (1) and (2) hold. Our run-time checker
(Section VIII-B) is designed to check for CFI marks, which
contain the label and tag of a function, before the indirect
control flow transfer succeeds. Since we assume W&EX to be
in place (Assumption A3), the adversary is unable to insert
counterfeit CFI marks into the application. The adversary
could, however, leverage data which accidentally matches the
format of a CFI mark and is included in the code of the
application. To investigate this possibility, we scanned for the

143



©

©

2L 4%

—

[J]

>

(o]

L 2% A

E

=

5 I_

Z 0% 1 -—.
T _ r T+ T+ T+ T+ T+ T+ T T T T 7
SEILETETEISESTEE
TS ELTETTELT LSS
e S £ oo & e £ & o
() o N o @ © &

R o ¥ i Q)

S & o o ©

9 & ©

Benchmark

Fig. 11.
L+TCFIL.

Run-time overhead of SPEC CPU2017 benchmarks when using

prefix of our CFI marks (the binary string 660£f1£84a9)
all the baseline binaries used in our performance evaluations,
as well as all binaries in the directories /bin, /sbin, and
/1ib/x86_64-1inux—gnu on our test system. We did not
find any match. We can then assume that accidental matches
are very unlikely and, hence, the attacker cannot trick the run-
time checker into calling an unintended target.

D. Handling Dynamic Libraries

Binaries are often distributed independently of the dynamic
libraries they require to work. As a result, it can be impractical
to apply the CFI marks to all the libraries as well as the
main binary. This can be addressed by using trampolines that
intercept indirect function calls between different libraries.
Each trampoline has a CFI mark that contains the expected
distance of the target function in a different library. As a result,
even if the dynamic library is independently updated, the CFI
marks on the trampolines remain the same and functionality
is maintained.

E. Performance Evaluation

After describing L+TCFI, we analyze its performance
using the run time overhead of the benchmarks we selected
from SPEC CPU2017 benchmarks, as well as measuring the
reduction of available throughput of an nginx instance.

Benchmarks from SPEC CPU2017. First, we analyze the
performance of SPEC CPU2017 benchmarks when protected
by L+TCFI compared to an unprotected baseline (Figure 11).
We run every benchmark three times on the same ma-
chine mentioned in Section VII; we report the median of
the three values, as recommended by SPEC. The geometric
mean of the overheads is 1.27%. Only two benchmarks have
an overhead higher than 3%: 600.perlbench_s (3.33%) and
623.xalancbmk_s (5.16%). Unsurprisingly, these benchmarks
have a higher proportion of indirect function calls compared
to other benchmarks.

Nginx Throughput. In addition to SPEC, we also test the
effect of L+TCFI on the throughput of an nginx instance.
We configure nginx to only use one worker thread, then we

144

HTTP HTTPS
1004 TETTL L+ c4dCF T
= ‘ Baseline | x
E 80 A - T *
5 .y
2 60 1
< W &
2 | *
g 407 * I e
< i
= 2 sF
20 sk g R

16B 64B 256B 1K 4K 16B 64B 256B 1K 4K
c
L
©
S 2% .
el
I
=
2 1% - -
< 0
()]
2 oo I |
_EO%_! IIII.II. II-,- _ mm

16B 64B 256B 1K 4K
File size

16B 64B 256B 1K 4K
File size

Fig. 12. Throughput and throughput reduction in nginx when using L+TCFI.

run the tool wrk [20] on a different machine to determine
the connection throughput of a build of nginx protected by
L+TCFI compared to an unprotected baseline (Figure 12). The
client machine has an Intel Xeon CPU E5-2630 processor and
uses its 16 threads to maintain 1024 simultaneous connections.
The two machines are connected through a Gigabit Ethernet
switch. In our tests we use a number of randomly-generated
files having size between 16 bytes and 1 MB, and we access
those files through unencrypted HTTP and HTTPS. Our tests
show that any file of at least 2 KB is sufficient to saturate the
Gigabit Ethernet connection while using HTTP, and any file of
at least 3 KB saturates it while using HTTPS; in both cases,
there is no measurable overhead above these marks. For that
reason, we do not show files bigger than 4 KB in the figure.
For smaller file sizes we can measure an overhead: considering
only the files of size 1 KB or smaller, the geometric mean of
the throughput reduction is 0.29% for HTTP and 1.99% for
HTTPS.

Both our tests show performance reductions in the order of 1%
to 2%, which attests that L+TCFI can be deployed in practice.

IX. RELATED WORK

In this section we give an overview of works in the
fields of CFI policies, benchmarks, as well as attacks on CFI
implementations.

A. CFI Schemes

A common design aspect of CFI policies is to assign equiv-
alence classes to every indirect caller and callee, and check that
the label of the caller matches that of the callee. The first CFI
policy, as proposed by Abadi et al. [2], uses CFGs generated by
static analysis to derive labels for valid control-flow transfers
between callers and callees, then enforces their match at run



time using inserted checks. Later, Zhang et al. [55] extend
this idea to binaries using binary instrumentation. Similarly,
Zhang et al. [54] propose a randomized ”Springboard section”
to encode a CFI policy implicitly by knowing the correct entry
for the indirect jump in this springboard. This technique is
also used by Tice et al. [51] in combination with a vtable
protection to create a fine-grained, forward-edge CFI compiler
pass for GCC and LLVM. Lockdown [39] uses dynamic
binary instrumentation to inject CFI checks dynamically at run
time. For backward-edge protection, Lockdown uses a shadow
stack that is also guarded by dynamic checks. However, this
flexibility incurs a higher performance overhead.

Another promising approach is enforcing type-based poli-
cies to restrict control-flow transfers. For example, TypeAr-
mor [53] leverages binary-analysis techniques to infer the pa-
rameter count of a function, to restrict call targets to functions
with less or equal amount of parameters than prepared by the
caller. 7CFI [33] extends this approach by also taking the
parameter types into consideration and leverages a points-to
analysis for the return instruction to protect the backward edge.
MARX [36], as well as VCI [15], augment CFI mechanisms
with efficient vtable protection by leveraging reconstructed
class hierarchies to reduce the overapproximation of, e.g., type-
based CFI policies [33]. Type-based CFI policies often imply a
relatively low performance overhead, hence, the clang compiler
frontend of LLVM also features a type-based CFI policy [30]
that checks a variety of dynamic types. All of these label-based
CFI implementations do not consider the distance of blocks to
a system call, which we introduce with NumCFI, that prevents
the attacker from taking shortcuts from the vulnerability to a
system call.

A different line of research investigates context-sensitive
CFI schemes, which consider some form of context to decide
whether an indirect call should be allowed. PathArmor [52]
compares the latest 16 taken branches against a statically
generated list whenever the application calls sensitive system
calls. mCFI [35] dynamically constructs a CFG at run time, in
order to restrict the legal targets of return instructions, but it
is similar to context-insensitive CFI for forward edges. Pitty-
Pat [14] intercepts security-sensitive system calls and validates
the control flow of the program based on online points-to
analysis of a subset of control-relevant data. /CFI [23] extends
this analysis to include more constraint data and further refine
the sets of allowed targets from any indirect call. OS-CFI [27]
focuses on reducing the size of the biggest equivalence class
by leveraging information about the origin of the code-pointer
used by the indirect call.

B. CFI Benchmarks

In order to compare the security of CFI policies, it is crucial
to quantify and compare how restrictive they are. A number
of metrics have been proposed for this purpose. The best-
known metric is Average Indirect-target Reduction (AIR) [55],
which is defined as the average reduction of allowed targets
across every CFG node (the higher the better). However, AIR
is not a good metric to compare different policies [51], as
most CFI papers that rely on AIR report similar values greater
than 99% [6]. Other metrics also have been proposed, e.g.,
QuantitiveSecurity [6], which is based on the number and size
of equivalence classes, AIA [18], which measures the average

number of allowed indirect targets, or Calltarget Reduction
(CTR) [34], which measures the absolute number of remaining
call targets after applying a CFI defense. However, all of these
metrics have a common pitfall: they consider every basic block
equivalent to each other. The goal of an attacker in most
cases is to leak the content of some memory, exfiltrate some
files, or install malware on the victim machine. The first goal
is trivially possible in the common CFI threat model which
includes arbitrary data read capabilities. The second and the
third goal require accessing system resources, for which the
attacker needs to use system calls. While other metrics do
not consider whether an edge is useful to allow the attacker
to reach a system call, CFINSIGHT is the only CFI evaluation
framework that considers this goal rather than merely the count
of reachable blocks.

C. Attacks on CFI

Although CFI can be a strong defense even in practical
scenarios, bypasses are possible, and can also be found in
practice. While Goktas et al. [21], as well as Davi et al. [13],
demonstrated that coarse-grained CFI can be bypassed with
new types of ROP gadgets due to the low number of labels,
the first work presenting a bypass for more secure fine-grained
CFI defenses was Control-Flow Bending [7]. It shows that a
single printf call can lead to Turing-complete computation
by abusing the right format specifiers, allowing the attacker
to overwrite the return address of printf, even in the
presence of a fully-precise static CFI implementation. Control
Jujutsu [16], instead, exploits insecure programming patterns
and the impreciseness of static analysis approaches to find
legal but unintended control flows, which can be leveraged for
attacks. Most of this impreciseness is caused by the central
element needed for CFG creation: the complete points-to
analysis for pointers, which is undecidable [42], [22], and,
hence, hard to achieve in practice. Another work uses specifics
of Ct+, namely vtable pointers, to chain virtual function calls
through existing call sites, allowing the attack to be resistant
against even fine-grained CFI enforcement [44]. Recently,
multiple CFI bypasses switched to data-only attacks, in which
the adversary corrupts only non-control data. These attacks can
inherently bypass any kind of static CFI, as they chain only
legitimate control-flow paths. While there are already solutions
that automatically generate payloads [26], [40], they are still
limited in target executable size due to heavy use of static
analysis.

X. CONCLUSION

In this paper, we present CFINSIGHT, a novel framework
to evaluate the security guarantees of CFI policies. With our
novel metrics BLOCKINSULATION and CFGINSULATION we
measure the usefulness of any basic block to constructing
a code-reuse attack targeting a system call instruction. We
introduce NumCFI, a novel CFI policy generator based on the
distance between each basic block and the closest system call
instruction. We use CFINSIGHT to analyze seven CFI policy
generators, including NumCFI, using five different metrics,
including CFGINSULATION. Lastly, we describe L+TCFI,
a fast implementation of NumCFI combined with a type-
based policy, with a performance overhead of just 1.27% on
benchmarks from the SPEC CPU2017 suite.

145



ACKNOWLEDGMENTS

This work was supported in part by the Deutsche

Forschungsgemeinschaft (DFG) — SFB 1119 — 236615297,
by the European Space Operations Centre with the Network-
ing/Partnering Initiative, by Huawei within the OpenS3 Lab,
by the German Federal Ministry of Education and Research
and the Hessian State Ministry for Higher Education, Research
and the Arts within ATHENE, and by the European Research
Council (ERC) under the European Union’s Horizon 2020
research and innovation programme (grant agreement No.
952697).

[11
[2]

[3]

[4]

[51

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

146

REFERENCES

“nginx,” http://nginx.org.

M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “CFI: Principles,
implementations, and applications,” in Proc. ACM Conference and
Computer and Communications Security, 2005.

O. Arias, L. Davi, M. Hanreich, Y. Jin, P. Koeberl, D. Paul, A.-R.
Sadeghi, and D. Sullivan, “HAFIX: Hardware-Assisted Flow Integrity
Extension,” in 52nd Design Automation Conference, 2015.

E. Bendersky, “pyelftools,” https://github.com/eliben/pyelftools, Jul
2020.

N. Burow, X. Zhang, and M. Payer, “SoK: Shining light on shadow
stacks,” in 2019IEEE Symposium on Security and Privacy, 2019.

N. Burow, S. A. Carr, J. Nash, P. Larsen, M. Franz, S. Brunthaler,
and M. Payer, “Control-Flow Integrity: Precision, Security, and
Performance,” ACM Comput. Surv., vol. 50, no. 1, Apr. 2017. [Online].
Available: https://doi.org/10.1145/3054924

N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. R. Gross, “Control-
flow bending: On the effectiveness of control-flow integrity,” in 24th
USENIX Security Symposium, 2015.

M. Castro, M. Costa, and T. Harris, “Securing software by enforcing
data-flow integrity,” in Proceedings of the 7th symposium on Operating
systems design and implementation, 2006.

S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi, H. Shacham,
and M. Winandy, “Return-oriented programming without returns,” in
Proceedings of the 17th ACM conference on Computer and communi-
cations security, 2010.

W. Chen, “Here’s that FBI Firefox exploit for you (cve-2013-1690),”
https://community.rapid7.com/community/metasploit/blog/2013/08/07/
heres-that- fbi-firefox-exploit- for- you-cve-2013-1690, 2013.

S. Crane, C. Liebchen, A. Homescu, L. Davi, P. Larsen, A.-R. Sadeghi,
S. Brunthaler, and M. Franz, “Readactor: Practical code randomization
resilient to memory disclosure,” in 36th IEEE Symposium on Security
and Privacy, 2015.

L. Davi, P. Koeberl, and A.-R. Sadeghi, “Hardware-assisted fine-grained
control-flow integrity: Towards efficient protection of embedded sys-
tems against software exploitation,” in Design Automation Conference,
2014.

L. Davi, A.-R. Sadeghi, D. Lehmann, and F. Monrose, “Stitching the
gadgets: On the ineffectiveness of coarse-grained control-flow integrity
protection,” in 23rd USENIX Security Symposium, 2014.

R. Ding, C. Qian, C. Song, B. Harris, T. Kim, and W. Lee, “Efficient
protection of path-sensitive control security,” in 26th USENIX Security
Symposium, 2017.

M. Elsabagh, D. Fleck, and A. Stavrou, “Strict virtual call integrity
checking for C++ binaries,” in Proceedings of the 2017 ACM on Asia
Conference on Computer and Communications Security, 2017.

I. Evans, F. Long, U. Otgonbaatar, H. Shrobe, M. Rinard, H. Okhravi,
and S. Sidiroglou-Douskos, “Control jujutsu: On the weaknesses of
fine-grained control flow integrity,” in Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security, 2015.

R. M. Farkhani, S. Jafari, S. Arshad, W. Robertson, E. Kirda, and
H. Okhravi, “On the effectiveness of type-based control flow integrity,”
in Proceedings of the 34th Annual Computer Security Applications
Conference, 2018.

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]
[39]

[40]

X. Ge, N. Talele, M. Payer, and T. Jaeger, “Fine-grained control-flow
integrity for kernel software,” in 2016 IEEE European Symposium on
Security and Privacy, 2016.

X. Ge, N. Talele, M. Payer, and T. Jaeger, “Fine-grained control-flow
integrity for kernel software,” in Ist IEEE European Symposium on
Security and Privacy, 2016.

W. Glozer, “wrk - a http benchmarking tool,” https://github.com/wg/
wrk, Apr 2019.

E. Goktas, E. Athanasopoulos, H. Bos, and G. Portokalidis, “Out of
control: Overcoming control-flow integrity,” in 2014 IEEE Symposium
on Security and Privacy, 2014.

S. Horwitz, “Precise flow-insensitive may-alias analysis is np-hard,”
ACM Transactions on Programming Languages and Systems, vol. 19,
no. 1, 1997.

H. Hu, C. Qian, C. Yagemann, S. P. H. Chung, W. R. Harris, T. Kim,
and W. Lee, “Enforcing unique code target property for control-flow
integrity,” in Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, 2018.

H. Hu, S. Shinde, S. Adrian, Z. L. Chua, P. Saxena, and Z. Liang,
“Data-oriented programming: On the expressiveness of non-control data
attacks,” in 2016 IEEE Symposium on Security and Privacy, 2016.

Intel Corporation, “Control-flow enforcement technology preview.”
https://software.intel.com/sites/default/files/managed/4d/2a/control-
flow-enforcement-technology-preview.pdf, 2017.

K. K. Ispoglou, B. AlBassam, T. Jaeger, and M. Payer, “Block oriented
programming: Automating data-only attacks,” in Proceedings of the
25th ACM SIGSAC Conference on Computer and Communications
Security, 2018.

M. R. Khandaker, W. Liu, A. Naser, Z. Wang, and J. Yang, “Origin-
sensitive control flow integrity,” in 28th USENIX Security Symposium,
2019.

V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and D. Song,
“Code-Pointer Integrity,” in 11th USENIX Symposium on Operating
Systems Design and Implementation, 2014.

A. Limited, “Arm® a64 instruction set architecture: Future
architecture  technologies in the a  architecture profile,”
https://developer.arm.com/docs/ddi0602/f/base-instructions-alphabetic-
order/bti-branch- target-identification, 2020.

LLVM, “Clang documentation, control-flow integrity,”
http://clang.llvm.org/docs/ControlFlowIntegrity.html, Jul 2020.

T. McCabe, “A complexity measure,” IEEE Transactions on Software
Engineering, vol. SE-2, no. 4, 1976.

Microsoft, “Control flow guard for clang/llvm and rust,”
https://msrc-blog.microsoft.com/2020/08/17/control-flow- guard-
for-clang-1lvm-and-rust/, 2020.

P. Muntean, M. Fischer, G. Tan, Z. Lin, J. Grossklags, and C. Eck-
ert, “7CFI: Type-assisted control flow integrity for x86-64 binaries,”
in International Symposium on Research in Attacks, Intrusions, and
Defenses, 2018.

P. Muntean, M. Neumayer, Z. Lin, G. Tan, J. Grossklags, and C. Eckert,
“Analyzing control flow integrity with LLVM-CFL” in Proceedings of
the 35th Annual Computer Security Applications Conference, 2019, p.
584-597. [Online]. Available: https://doi.org/10.1145/3359789.3359806

B. Niu and G. Tan, “Per-input control-flow integrity,” in Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications
Security, 2015.

A. Pawlowski, M. Contag, V. van der Veen, C. Ouwehand, T. Holz,
H. Bos, E. Athanasopoulos, and C. Giuffrida, “Marx: Uncovering
class hierarchies in C++ programs.” in Symposium on Network and
Distributed System Security, 2017.

PaX Team, “Pax address space layout randomization (ASLR),” http:
/Ipax.grsecurity.net/docs/aslr.txt.

PaX Team, “RAP: RIP ROP,” 2015.

M. Payer, A. Barresi, and T. R. Gross, “Fine-grained control-flow
integrity through binary hardening,” in International Conference on
Detection of Intrusions and Malware, and Vulnerability Assessment,
2015.

J. Pewny, P. Koppe, and T. Holz, “Steroids for doped applications:



[41]

[42]

[43]
[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

A compiler for automated data-oriented programming,” in 2019 IEEE
European Symposium on Security and Privacy, 2019.

Qualcomm Technologies Inc., “Pointer authentication on armv8.3,”
https://www.qualcomm.com/media/documents/files/whitepaper-
pointer-authentication-on-armv8-3.pdf, 2017.

G. Ramalingam, “The undecidability of aliasing,” ACM Transactions
on Programming Languages and Systems, vol. 16, no. 5, 1994.

A. Rimsa, “Cfggrind,” https://github.com/rimsa/CFGgrind, Jul 2020.

F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R. Sadeghi, and
T. Holz, “Counterfeit object-oriented programming: On the difficulty
of preventing code reuse attacks in C++ applications,” in 2015 IEEE
Symposium on Security and Privacy, 2015.

H. Shacham, “The geometry of innocent flesh on the bone: Return-into-
libc without function calls (on the x86),” in Proceedings of the 14th
ACM conference on Computer and communications security, 2007.

Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino,
A. Dutcher, J. Grosen, S. Feng, C. Hauser, C. Kruegel, and G. Vigna,
“SoK: (State of) The Art of War: Offensive Techniques in Binary
Analysis,” in IEEE Symposium on Security and Privacy, 2016.

H. Sidhpurwala, “Hardening ELF binaries using Relocation Read-Only
(RELRO),” Red Hat Blog, https://www.redhat.com/en/blog/hardening-
elf-binaries-using-relocation-read-only-relro, 2019.

K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and
A.-R. Sadeghi, “Just-in-time code reuse: On the effectiveness of fine-
grained address space layout randomization,” in IEEE Symposium on
Security and Privacy, 2013.

Solar Designer, “Getting around non-executable stack (and fix),” https:
//seclists.org/bugtraq/1997/Aug/63, 1997.

C. Song, H. Moon, M. Alam, I. Yun, B. Lee, T. Kim, W. Lee, and
Y. Paek, “HDFI: Hardware-Assisted Data-Flow Isolation,” in 2016 IEEE
Symposium on Security and Privacy, 2016.

C. Tice, T. Roeder, P. Collingbourne, S. Checkoway, U. Erlingsson,
L. Lozano, and G. Pike, “Enforcing forward-edge control-flow integrity
in GCC & LLVM,” in 23rd USENIX Security Symposium, 2014.

V. van der Veen, D. Andriesse, E. Goktas, B. Gras, L. Sambuc,
A. Slowinska, H. Bos, and C. Giuffrida, ‘“Practical context-sensitive
CF1,” in Proceedings of the 22nd ACM SIGSAC Conference on Com-
puter and Communications Security, 2015.

V. Van Der Veen, E. Goktas, M. Contag, A. Pawoloski, X. Chen,
S. Rawat, H. Bos, T. Holz, E. Athanasopoulos, and C. Giuffrida, “A
tough call: Mitigating advanced code-reuse attacks at the binary level,”
in 2016 IEEE Symposium on Security and Privacy, 2016.

C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant,
D. Song, and W. Zou, “Practical control flow integrity and random-
ization for binary executables,” in 2013 IEEE Symposium on Security
and Privacy, 2013.

M. Zhang and R. Sekar, “Control flow integrity for COTS binaries,” in
22nd USENIX Security Symposium, 2013.

147



	Raising The Bar: Advancing Mitigations Against Memory-Corruption and Side-Channel Attacks
	Abstract
	Zusammenfassung
	Contents
	 Synopsis
	1 Introduction
	1.1 Software Diversity
	1.2 Control-Flow Integrity
	1.3 Memory Isolation and TEEs
	1.4 Side-Channel Attacks and Defenses
	1.5 Improving Protocols with TEEs
	1.6 Summary of My Contributions

	2 Memory-Corruption Attack Mitigations
	2.1 Software Diversity
	2.1.1 Our Contribution
	2.1.2 Related Work

	2.2 Memory Isolation
	2.2.1 Our Contribution
	2.2.2 Related Work

	2.3 Control-Flow Integrity
	2.3.1 Our Contribution
	2.3.2 Related Work


	3 Side-Channel Attack Mitigations
	3.1 Software-Only Side-Channel Mitigations
	3.1.1 Our Contribution
	3.1.2 Related Work

	3.2 Hardware-Assisted Side-Channel Mitigations
	3.2.1 Our Contribution
	3.2.2 Related Work


	4 TEE Applications
	4.1 Automated Speech Recognition
	4.1.1 Our Contribution

	4.2 Efficient Smart Contracts on Legacy Blockchains
	4.2.1 Our Contribution

	4.3 Related Work

	5 Conclusion and Outlook
	5.1 Future Directions

	Bibliography
	List of Acronyms
	Erklärung gemäß §9 der Promotionsordnung

	 Publications Part of This Cumulative Dissertation
	Summary
	A Selfrando: Securing the Tor Browser Against De-anonymization Exploits (PETS 2016)
	B JITGuard: Hardening Just-in-time Compilers with SGX (ACM CCS 2017)
	C VoiceGuard: Secure and Private Speech Processing (Interspeech 2018)
	D DR.SGX: Automated and Adjustable Side-Channel Protection for SGX using Data Location Randomization (ACSAC 2019)
	E FastKitten: Practical Smart Contracts on Bitcoin (USENIX Security 2019)
	F HybCache: Hybrid Side-Channel-Resilient Caches for Trusted Execution Environments (USENIX Security 2020)
	G CFInsight: A Comprehensive Metric for CFI Policies (NDSS 2022)


