
DR.SGX: Automated and Adjustable Side-Channel Protection
for SGX using Data Location Randomization

Ferdinand Brasser
Technische Universität Darmstadt

ferdinand.brasser@trust.tu-
darmstadt.de

Srdjan Capkun
ETH Zurich

srdjan.capkun@inf.ethz.ch

Alexandra Dmitrienko
University of Würzburg

alexandra.dmitrienko@uni-
wuerzburg.de

Tommaso Frassetto
Technische Universität Darmstadt

tommaso.frassetto@trust.tu-
darmstadt.de

Kari Kostiainen
ETH Zurich

kari.kostiainen@inf.ethz.ch

Ahmad-Reza Sadeghi
Technische Universität Darmstadt

ahmad.sadeghi@trust.tu-
darmstadt.de

ABSTRACT
Recent research has demonstrated that Intel’s SGX is vulnerable
to software-based side-channel attacks. In a common attack, the
adversary monitors CPU caches to infer secret-dependent data
accesses patterns. Known defenses have major limitations, as they
require either error-prone developer assistance, incur extremely
high runtime overhead, or prevent only specific attacks.

In this paper, we propose data location randomization as a novel
defense against side-channel attacks that target data access patterns.
Our goal is to break the link between the memory observations by
the adversary and the actual data accesses by the victim. We design
and implement a compiler-based tool called DR.SGX that instru-
ments the enclave code, permuting data locations at fine granularity.
To prevent correlation of repeated memory accesses we periodically
re-randomize all enclave data. Our solution requires no developer
assistance and strikes the balance between side-channel protection
and performance based on an adjustable security parameter.

CCS CONCEPTS
• Security and privacy→ Side-channel analysis and counter-
measures; Trusted computing.

KEYWORDS
SGX; side channel defense; data randomization
ACM Reference Format:
Ferdinand Brasser, Srdjan Capkun, Alexandra Dmitrienko, Tommaso Fras-
setto, Kari Kostiainen, and Ahmad-Reza Sadeghi. 2019. DR.SGX: Automated
and Adjustable Side-Channel Protection for SGX using Data Location Ran-
domization. In 2019 Annual Computer Security Applications Conference (AC-
SAC ’19), December 9–13, 2019, San Juan, PR, USA. ACM, New York, NY,
USA, 13 pages. https://doi.org/10.1145/3359789.3359809

ACSAC ’19, December 9–13, 2019, San Juan, PR, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in 2019 Annual
Computer Security Applications Conference (ACSAC ’19), December 9–13, 2019, San Juan,
PR, USA, https://doi.org/10.1145/3359789.3359809.

1 INTRODUCTION
Intel Software Guard Extensions (SGX) [18, 35] enable execution
of security-critical application code, called enclaves, in isolation
from the untrusted system software. SGX was designed to ensure
confidentiality of enclave data and integrity of enclave execution
and is used in a number of academic works [4, 9, 14, 15, 20, 26, 41,
58, 63, 70].

Recent research has, however, demonstrated that SGX isolation
can be violated using software-based side-channel attacks. In SGX,
memory management, including paging, is left to the untrusted OS
[18]. By monitoring page usage, the OS can learn coarse-grained
enclave control flow or data access patterns [72, 77]. Enclave data
can also be inferred by monitoring CPU caches that are shared
between the enclave and the untrusted software, enabling more
fine-grained information leakage [11, 31, 32, 51, 64]. Such attacks
can defeat one of the main benefits of SGX—the ability to compute
over private data on an untrusted (cloud) platform.

The problem of side-channel leakage has been studied exten-
sively. Oblivious RAM (ORAM) [69] and Oblivious Execution
[44, 45, 48] are well-known defensive techniques. Obfuscuro [1]
implements those techniques for SGX enclaves, hiding all access
patterns. The main drawback is an extremely high runtime over-
head (83× on average and up to 220×). Another common defense is
manual code hardening that is typically used by developers of cryp-
tographic algorithms to make their implementations side-channel
resilient [12]. This defense is not easily applicable to enclaves writ-
ten by developers who are not security experts. Recent research has
also proposed SGX-specific defenses. T-SGX [66] and Déjá Vu [17]
use the processor’s transactional memory features to prevent at-
tacks that interrupt the victim enclave repeatedly. Such features
are available only in a subset of SGX processors and the defense
only protects against attacks that leverage interrupts. Cloak [33]
and Raccoon [59] hide memory accesses to developer-annotated
enclave data, but relying on the developer to mark all (possibly
non-obvious) secret data correctly can be very error-prone. In sum-
mary, all known defenses either impose extremely high runtime
overhead, rely on the developer, require functionality that is not
available in all CPUs, or mitigate only specific side channels.

Our goals and approach. In this paper we focus on information
leakage caused by data access monitoring. Our goal is to provide
an automated tool that provides side-channel protection without

https://doi.org/10.1145/3359789.3359809
https://doi.org/10.1145/3359789.3359809

ACSAC ’19, December 9–13, 2019, San Juan, PR, USA F. Brasser, S. Capkun, A. Dmitrienko, T. Frassetto, K. Kostiainen, and A.-R. Sadeghi

developer assistance and enables an adjustable trade-off between
security and performance.

We focus on data accesses, as they are the target of many recent
SGX attacks [11, 31, 51, 64]. Preventing control flow leakage is
also important, but an orthogonal problem to our work. We build
an automated tool because, similar to the development of other
software, not all enclave developers are security experts and many
would fail to correctly use solutions that require identification
of potentially subtle sources of leakage for manual annotation.
Instead, our primary goal is to strike the balance between provided
protection and performance. While our tool can be configured to
prevent all the leakage, this would incur a prohibitive performance
penalty for most applications. Instead, we aim to give a means to
enclave developers to get the best possible protection for a given
application and performance overhead.

The main idea of our approach is to randomize all data locations
in the enclave’s memory at fine granularity. The enclave generates a
secret randomization key and based on that computes a permutation
for every memory address. As a result, the adversary cannot map
the observed (permuted) memory address to the actual address,
regardless of the channel he uses to make observations [11, 31,
32, 51, 64, 72, 73, 77]. Because all data is randomized without the
need to understand its structure or semantics, we call our approach
semantic-agnostic data randomization.

Randomization is a well-known hardening technique, but our ap-
proach is different from the existing solutions that randomize code
by leveraging its known structure, such as functions or blocks. Due
to the well-known difficulty of C/C++ code analysis and pointer
tracking, no similar structure is available for data [6]. Indeed, exist-
ing randomization tools like SGX-Shield [65] focus on randomizing
the code and do not tackle the problem of data randomization.
Thus, they cannot prevent attacks that exploit data accesses, such
as [11, 31, 51, 64].

Challenges and results. Secure and practical realization of our
approach imposes a number of technical challenges. The first chal-
lenge is secure and efficient permutation computation under adver-
sarial monitoring. If the adversary is able to derive information from
the process of address permutation, he can revert the randomiza-
tion. The second challenge is efficiency — computing a permutation
for every data access is expensive and causes a high overhead. The
third problem is information leakage through repeated memory ac-
cesses. Although an individual access is effectively hidden from the
adversary, repetitive access patterns may allow (permuted) address
correlation and leakage, i.e., correlation attacks.

In this paper, we tackle the above mentioned challenges and
design and implement a compiler-based tool called DR.SGX (Data
Location Randomization for SGX) that instruments enclave code at
compile time such that all memory locations used to store enclave
data (in the heap) are permuted at cache-line granularity during run
time. We realize the permutation securely using small-domain en-
cryption [5] and leveraging the CPU’s hardware acceleration units
(AES-NI). To address correlation attacks, our tool allows periodic re-
randomization of enclave data: more aggressive re-randomization
rates hide repeated memory access patterns better at the cost of
higher run-time overhead.

The basic runtime overhead of DR.SGX is 4.36× without re-
randomization. Using different re-randomization rates, we mea-
sured an overhead approximately between 5× and 11×. We acknowl-
edge that this is a significant performance penalty, but emphasize
that our solution is at least one order of magnitude faster than
complete ORAM schemes like Obfuscuro [1]. Additionally, we note
that this overhead only applies to the SGX enclave, which handles
just the security-critical part of an application.

Our security evaluation reveals that the protection provided
by DR.SGX depends on the target enclave. Enclaves where pre-
dictable data access patterns, like initialization routines, are soon
followed by secret-dependent data accesses, require aggressive re-
randomization to prevent leakage, incurring higher overhead. In a
corner case, our solution can prevent any leakage by re-randomizing
enclave memory after every memory access, effectively functioning
as an ORAM implementation. However, enclaves where secret-
dependent accesses do not happen (soon) after predictable accesses
can be strongly protected with much lower overhead.

Contributions. This paper makes the following main contribu-
tions:

• Novel approach. We propose a novel approach called
semantic-agnostic data randomization as a defense against
side-channel attacks on SGX.

• New tool. We design and implement a tool called DR.SGX
that instruments code to permute an enclave’s data memory
locations at cache-line granularity and re-randomize them
repeatedly.

• Evaluation.We evaluate the performance of our system, ana-
lyze possible leakage, and show how previous attack targets
can be protected.

The paper is organized as follows: Section 2 defines our problem.
Section 3 presents our approach and Section 4 details on our im-
plementation. We evaluate DR.SGX’s performance in Section 5 and
analyze its security in Section 6. Section 7 reviews related work,
Section 8 provides discussion and Section 9 concludes the paper.

2 PROBLEM STATEMENT
In this work we focus on systems that provide an isolated execution
environment that is implemented as an execution mode of the
main CPU. In particular, the CPU’s shared resources, like caches,
are used by all execution modes of the CPU and thus are shared
between isolation domains. Our work is targeted towards Intel
SGX, however, the same model also applies to other architectures
like ARM TrustZone [2] and SANCTUARY [10] or software-based
isolation solutions [49].

Problem space. Side-channel attacks on software in general, and
SGX in particular, come in many different forms. Any kind of re-
source use that is influenced by the software’s execution and can be
observed by the adversary can serve as a side channel. For instance,
the use of electricity as well as effects thereof like electro-magnetic
emission, or the use of shared CPU caches. In this work we focus on
software side channels, i.e., such that are observable by a software
program running on the target machine, precluding physical or
hardware side-channel attacks.

DR.SGX ACSAC ’19, December 9–13, 2019, San Juan, PR, USA

In the realm of software side-channel attacks a number of distinct
variants exist. On one hand, different shared resources can be used
as a side channel, like the different caches of the CPU, or the virtual
memory management. On the other hand, side-channel attacks can
target different information, including sensitive access patterns to
data as well as secret dependent code execution paths.

In this work we focus on software attacks that target data ac-
cesses and consider attacks aiming to infer the control flow of a
program as an orthogonal problem. Our rationale is two-fold. First,
many side-channel attacks on SGX have been based on data access
patterns [11, 31, 51, 64]. Furthermore, our solution can be combined
with protections against control flow leakage attacks, for example
with the Zigzagger approach proposed by Lee et al. [42].

Adversary model. The adversary’s goal is to extract sensitive in-
formation from an isolated execution environment (enclave) [3, 8]
through cache side-channel attacks (including CPU-internal caches
like the translation look-aside buffer [32]) and/or paging side-
channel attack [72, 77]. Sensitive data in this context are not lim-
ited to cryptographic keys, which are the “classical” targets of
side-channel attacks. Instead, sensitive data have to be seen much
broader, for instance, when processing privacy-sensitive data in the
cloud [11].

The adversary can freely configure and modify all software of
the system, including privileged software like the operating system
(OS). He knows the initial memory layout of the enclave, i.e., the
code and initial data of the enclave. Furthermore, we assume that
the adversary can initiate the enclave arbitrarily often.

However, the adversary cannot directly access the memory of
the enclave. The internal processor state (e.g., the CPU registers) is
inaccessible to the adversary, in the event of an interrupt the state
is securely stored in an isolated memory region. The adversary
cannot modify the code or initial data of the enclave, as enclave’s
integrity can be verified using remote attestation.

We consider our work orthogonal to the recently discovered plat-
form vulnerabilities Meltdown [43] and Spectre [39] that leverage
transient execution to read secrets across isolation boundaries. Al-
though these vulnerabilities apply to SGX enclaves as well [16, 71],
Intel has already issued security updates for SGX that address such
attacks [16]. Also, SGX platform keys from unpatched (and thus
potentially compromised) platforms can be identified at the time
of attestation and revoked [16]. The more general problem of data-
access driven side-channels is much harder to solve in architectures
like SGX. DR.SGX addresses this latter and more difficult problem.

We assume the position of the attacker to be as strong as possible
and therefore we will assume him to have a noise-free cache side-
channel and to be able to obtain a “perfect cache trace” of the en-
clave. This means that he can observe all memory accesses of an en-
clave, e.g., using a cache attack technique such as Prime+Probe [54].
He can precisely determine which cache line has been used by
the enclave and also the order in which the cache lines have been
accessed. The adversary cannot extract information which is more
fine grained than accesses to cache lines, i.e., the offset inside a
cache line is not observable to him (see Section 8 for a discussion of
possible attacks with finer granularity). Additionally, for each mem-
ory access, the adversary can gain information about the accessed
memory pages of an enclave [72, 77].

More formally, trace t = {c1,p1}, ..., {cn,pn } is an ordered list of
side-channel observation pairs that capture every memory access
that the victim enclave makes. In each observation pair, ci is the
part of the memory address that determines the cache line the
accessed address gets mapped to and pi is the part of the address
that determines the accessed memory page. On current Intel CPUs
the cache line size is 64 bytes, thus, the last six bits of an address
are oblivious to the adversary.

Design goals. General statements about which memory accesses
of a program could leak information are hard to make in practice.
All memory accesses must be assumed to potentially leak informa-
tion if the attacker can associate them with relevant data elements
or structures. For the adversary it is sufficient to distinguish two
memory locations to learn one bit of information. Those memory
locations could be two different data structures, e.g., two variables,
or different elements within the same data structure, e.g., different
entries in a table. To protect all possible programs, the data struc-
tures of a program and the elements within data structures both
need to be randomized.

The goal of our work is to provide a protection mechanism
against side-channel attacks that can be applied to arbitrary enclave
programs without developer assistance. In particular, the developer
must not be required to follow any rules or guidelines for program-
ming his application or add annotations to the source code. While
annotating “critical” data in general helps improving the perfor-
mance of most solutions, it is also very error-prone: especially in
non-cryptographic applications, it is not always obvious which
accesses to data objects might leak sensitive information. This is
crucial as most software developers are not security experts and
cannot comprehensively identify data that could leak information.

The goal of DR.SGX is to provide a trade-off between security
and cost in the design space reaching from unprotected processes,
over plain SGX enclaves, enclaves with DR.SGX to oblivious RAM
(ORAM) solutions. On the one hand, plain SGX enclaves provide
basic data protection with little performance penalty; on the other
hand, schemes like Obfuscuro [1] that implement ORAM for every
memory access impose very high performance overheads (83×
on average and up to 220×). DR.SGX strives to protect enclaves
better than plain SGX while keeping the performance overhead at
least one order of magnitude lower than systems like Obfuscuro.
DR.SGX’s security parameter (the re-randomization windoww : see
Section 3) allows it to be configured to cover the spectrum between
plain SGX and full ORAM for data accesses. Withw = 1 DR.SGX
implements ORAM, admittedly in a costly way. On the other hand,
w = ∞ only randomizes the initial memory layout of an enclave,
which can be sufficient for some enclaves; we discuss this scenario
in Section 6. For most enclaves a window size between those two
extremes can be chosen. We evaluate different windows sizes in
Section 5.

3 DR.SGX
Our core idea is to break the link between side-channel observations
made by an attacker and the sensitive information processed by the
victim. Side-channel attacks inherently rely on the correlation be-
tween an observable effect and the data the attacker aims to extract.
Our defense obfuscates the link between memory locations and

ACSAC ’19, December 9–13, 2019, San Juan, PR, USA F. Brasser, S. Capkun, A. Dmitrienko, T. Frassetto, K. Kostiainen, and A.-R. Sadeghi

FSb0..63
FSb64..127
FSb128..191
FSb192..255

FSb64..127
FSb0..63

FSb192..255

FSb128..191

FSb192..255

FSb64..127

FSb128..191

FSb0..63

Initial memory
layout (L0)

L1 L2
π1 π2

static const unsigned char FSb[256] = {
0x63, 0x7C, 0x77, 0x7B, 0xF2, 0x6B, 0x6F, 0xC5,
0x30, 0x01, 0x67, 0x2B, 0xFE, 0xD7, 0xAB, 0x76,

... };

int mbedtls_aes_setkey_enc(...) {
... ((uint32_t) FSb[(RK[3] >> 8) & 0xFF]) ...
}

Figure 1: DR.SGX’s memory block randomization splits
large memory structures like arrays into small blocks and
reorders them. During the run time of an enclave its mem-
ory layout are re-randomized using the permutation func-
tion π . Each memory block is the size of a cache line (64 B),
i.e., the finest granularity observable by the adversary.

data elements. Data elements are located at randomized memory
locations, so the adversary cannot deduce which data element was
accessed from an observed memory access location. The adversary
no longer learns which data element was accessed but only learns
that some data element was accessed.

DR.SGX splits enclave memory into small blocks that are ran-
domly reordered, resulting in an unpredictable memory layout from
the adversary’s point of view. Figure 1 illustrates the concept on
the example of the S-box of an AES implementation. By default
the S-box (FSb) is stored as an array in consecutive memory at a
predictable location, shown on the left as initial memory layout L0
in Figure 1. Through a cache side channel an adversary can observe
which part of the S-box is accessed. Since the accesses to the S-box
depend on the secret key the adversary can use this information to
recover the key. However, the adversary cannot observe accesses
to individual bytes of the S-box but only at the granularity of cache
lines (64 bytes). DR.SGX divides all data memory of an enclave into
blocks of cache line size, illustrated by the blocks forming L0 in
Figure 1. These blocks are reordered by a permutation function π1,
resulting in a randomized memory layout L1. Throughout the run-
time of an enclave the memory layout is constantly re-randomized,
by applying a permutation function π2 on L1 a new and different
memory layout L2 is created. As a result, the memory locations
and thus the cache lines corresponding to the S-box are frequently
changing, hindering the adversary’s ability to link observed (cache
or paging) accesses to the S-box.

3.1 Requirements and Challenges
Below we describe the main challenges to tackle when implement-
ing this idea.

Semantic gap. Providing side-channel protection through data
randomization without developer assistance (e.g., code annotations)
is a challenging task due to the semantic gap that is inherent to
unsafe languages like C and C++. Currently C and C++ are the
only programming languages officially supported in the software
development kit (SDK) that Intel provides for the development of
SGX enclaves.

Re-randomization. Randomizing the memory layout of a pro-
gram once to prevent an adversary from learning which data has
been accessed is not sufficient. The adversary can determine the
relation of memory locations and data objects based on various
information. For instance, the initialization of data structures can
reveal data locations. In the example in Figure 1, the S-box is ini-
tialized during the creation of the enclave, however, other AES
implementations initialize the S-box at run time which allows the
adversary to learn the locations of all parts of the S-box array after
the initial randomization of the memory layout. Similarly, access
frequency can reveal the randomized location of data elements: if
a particular object is accessed a predictable number of times the
adversary can identify the object by finding the memory location
that was accessed the expected numbers of times (frequency analy-
sis). To thwart the adversary in recovering the randomized memory
location of data objects, their locations need to be changed through-
out the runtime, such that the adversary cannot link data accesses
to data objects.

(Re-)randomization under attacker’s observation. All memory-
related actions of the attacked enclave can be observed by the
adversary, including those required during the initial data random-
ization and during the re-randomization of the memory layout.
The initial (un-randomized) memory layout is known to the ad-
versary, i.e., he can monitor memory events while data is copied
to its randomized locations. Similarly, if the adversary managed
to recover information about the randomized memory layout Ln
the adversary could link the re-randomization operations used to
transfer data from Ln to Ln+1 and thus also gain knowledge about
the new layout Ln+1. Therefore, the randomization has to be done
in such a way that its effects are not observable by the adversary.

3.2 DR.SGX Design
Our solution, a compiler-based tool called DR.SGX, addresses the
design goals and challenges described above by randomizing all
program data at fine granularity and re-randomizing the data con-
tinuously throughout the run time of the program.

Figure 2 shows the system view of DR.SGX. The trusted com-
puting base (TCB) of an SGX enclave includes the CPU package
and an isolated section of the main memory (RAM). However, the
CPU caches, translation look-aside buffer (TLB) and the page tables
are observable by the adversary. The data cache of the CPU can be
used to observe memory access patterns of an enclave. On the other
hand, the paging mechanism can be exploited in different ways to
learn about memory reads and writes by an enclave. By observing
cache conflicts in the TLB, the adversary learns which memory

DR.SGX ACSAC ’19, December 9–13, 2019, San Juan, PR, USA

RAM

Page Tables

Permutation Buffer

Stack

FSb0..63 FSb64..127 FSb128..191

RNG AES

Execution Unit

Data
Caches

TLB

Registers

FSb0..63

FSb64..127

FSb128..191

FSb0..63

FSb64..127

FSb128..191

C
o

d
e

L0

Ln

Ln+1

CPU Package

AES: Advanced Encryption Standard
RNG: Random Number Generator

TLB: Translation Look-aside Buffer

Enclave

FSb192..255

FSb192..255

FSb192..255

Func12Func11

…

unsigned char FSb[256] =

Func1n

FuncM2FuncM1 FuncMn

D
ata

π

π

Figure 2: DR.SGX’s system design. The main memory of
an enclave is not directly accessible by the adversary, how-
ever, the adversary can observe memory access indirectly
through cache and paging side channels. The CPU’s internal
state stored in registers and/or special function units (e.g.,
the AES engine) are not observable by the adversary.

pages were used. Additionally, the adversary has control over the
page tables also allowing him to learn which memory pages an
enclave accessed.

However, an SGX enclave also includes components that cannot
be attacked through a software side channel. The CPU’s registers
and accesses to them cannot be observed by the adversary.1 Also the
execution unit and special function units, like the random number
generator (RNG) or the AES engine, are secure when operating over
registers. DR.SGX combines these parts and function units of SGX
that are secure against side channels, to obfuscate main memory
accesses to the adversary.

DR.SGX performs randomization at granularity of cache lines,
the finest granularity at which the adversary can distinguish mem-
ory accesses (Section 2). Figure 2 shows howDR.SGX uses a random
permutation function π to reorder the program’s data in memory.
Since the adversary cannot identify individual elements within a
single cache line, accesses to the first array element (FSb[0]) and
the 64th element (FSb[63]) are indistinguishable for the adversary.
The randomization is based on secret values which are generated
and only accessible inside the enclave and only processed by the
hardware AES engine of the CPU. The CPU’s AES engine holds all
state and intermediate results in registers which are not observ-
able by the adversary, hence, the adversary cannot learn about π
through cache or paging side channels.

1The LazyFP [68] attack cannot be used on SGX enclaves, since the register state is
cleaned by the processor before exiting the enclave.

DR.SGX randomizes global variables and the heap. The stack
cannot be easily randomized, since the hardware expects it to be
contiguous. Thus, variables on the stack larger than a cache line are
moved to the heap, and replaced by a pointer on the stack. The re-
maining variables are protected using multiple memory layouts: for
every function n variants are created (Func11, Func12, ..., FuncMn
in Figure 2), all with different stack memory layouts. On every
invocation of a function one of its n variants is chosen randomly.

The size of the memory region (heap) for the enclave’s data is a
parameter of the permutation function π (see Section 4).

Memory access instrumentation. DR.SGX performs randomiza-
tion on cache line granularity for two reasons: (a) randomizing at
finer granularity provides no security advantages, and (b) random-
izing in a data structures aware fashion is impractical due to the
semantic gap. Our randomization requires that all memory accesses
are instrumented, which we ensure using a compiler pass. The pro-
gram code determines the memory location (i.e., address) of the
data in the original, un-randomized layout. Then, before the access
is performed, the randomized location of that address is calculated.
The data is then accessed in its new, randomized location.

As we will elaborate in later sections, the cost of performing the
randomization calculation for every memory access is significant.
We overcome this problem by implementing a “permutation buffer”.
The permutation buffer, similar to an address translation cache,
holds the randomized locations of recently used data. Hence, for
data locations stored in the permutation buffer the function π does
not need to be recalculated. However, accesses to the permutation
buffer itself must be protected from leaking information. Therefore
the buffer is accessed in an oblivious way.

Initial randomization. The initial randomization of the enclave’s
data needs to be done in a way that cannot be observed by the
adversary, to keep him from learning the randomization function
π or the new memory layout. In particular, if the adversary can
observe a read operation from the un-randomized initial memory
layout and a subsequent write operation to a randomized address,
he can link data structures to the randomized memory locations.

A general approach to break this linkage is to load a set of data
into CPU registers (register operations cannot be tracked by the
adversary) and write the data in a random fashion to their new
locations. This approach, however, is limited in the amount of the
data that can be loaded at once into registers, enabling the adversary
to learn partial information about the randomized memory layout.

DR.SGX uses a randomization method which hides fine-grained
(cache-line granularity) memory locations from the adversary.
Specifically, we use non-temporal writes [36] that evade the
CPU’s caches, therefore the adversary cannot observe memory
addresses written during the initial randomization. Although the
non-temporal writes prevent accesses to the new memory layout
L1 from being cached, the adversary can still observe the written
memory locations through the more coarse-grained paging side-
channel (that is, the adversary’s trace contains a page event pi , but
no cache event ci for the non-temporal write). This allows him
to know, for each memory block read from the previous memory
layout L0, to which memory page it was written in L1. However,
multiple cache lines are written to each page: assuming 4 KB pages,
64 cache-line-sized memory blocks will be written to the same page.

ACSAC ’19, December 9–13, 2019, San Juan, PR, USA F. Brasser, S. Capkun, A. Dmitrienko, T. Frassetto, K. Kostiainen, and A.-R. Sadeghi

Rand.
Lib
IR

C /
C++

IR BinaryClang
Target

X86_64

Inst.
Pass

@var = common global [1024 x i32] zeroinitializer, align 16

define i32 @main(i32 %argc, i8** %argv) #0 {
[...]
store i32 42, i32* getelementptr inbounds ↵

([1024 x i32], [1024 x i32]* @var, i64 0, i64 256), align 16
[...]

}

@var = common global [1024 x i32] zeroinitializer, align 16

define i32 @main(i32 %argc, i8** %argv) #0 {
[...]
%store.arg.int = ptrtoint i32* getelementptr inbounds ↵

([1024 x i32], [1024 x i32]* @var, i64 0, i64 256) to i64
%addrencrypt.res.int = call i64 @addrencrypt(i64 %store.arg.int)
%addrencrypt.res = inttoptr i64 %addrencrypt.res.int to i32*
store i32 42, i32* %addrencrypt.res, align 16
[...]

}

Inst.
IR

int var[1024];

int main(int argc, char const *argv[]) {
[...]
var[256] = 42;
[...]

}

1 2 3 4

3a

3b

3c

Figure 3: Code instrumentation with DR.SGX. Before each
memory access the randomized memory address is calcu-
lated. The calculation is done by a function provided by the
DR.SGX library (Rand. lib), which can be written in C / C++
and is included in the instrumented binary. The snippets
show the instrumentation of a sample store instruction.

To hide this access pattern the initial randomization of DR.SGX
accesses all memory pages of L1 for each memory block that is
moved, see Section 6.2.

DR.SGX continuously re-randomizes the memory layout. Start-
ing from the initial memory layout L0 a random permutation func-
tion π1 is applied to derive the first randomized layout L1 = π1

(
L0

)
.

After a configurable windoww thememory layout is re-randomized,
applying π2 to derive L2 = π2

(
L1

)
.

Like with the initial randomization, the adversary (who can ob-
serve reads from Ln and writes to Ln+1) could link those operations
to learn the relation between those memory layouts. Again, DR.SGX
uses non-temporal writes to hide this information. In Section 6 we
explain how a small number of re-randomization rounds hides the
location of the element from the adversary completely.

4 DR.SGX IMPLEMENTATION
This section provides further details of DR.SGX.We explain howwe
implemented the key-components of DR.SGX: access instrumenta-
tion, permutation computation, initial randomization, permutation
buffering, and re-randomization. Throughout this section we will
refer to data memory regions or data memory accesses simply as
memory regions and accesses (omitting data).

4.1 Memory Access Instrumentation
DR.SGX randomizes the memory locations of an SGX enclave’s data.
The enclave, however, has been developed targeting a linear (virtual)
memory model. Therefore, each memory access of an enclave has
to be instrumented to determine the correct randomized memory
location of the data element that is meant to be accessed.

We extended the LLVM compiler [47] to instrument the enclave
code, working at the intermediate representation (IR) level. Figure 3
shows on the top the high-level compile process of LLVM. A source
file on the left is translated by the compiler front-end 1 , Clang
in the case of C/C++, into a LLVM intermediate representation
(IR) 2 . The IR is then translated by the back-end 3 into target
architecture specific binary code 4 , which in our case is Intel x86
64-bit. With DR.SGX the IR file is processed by a compiler pass 3a
that instruments all memory access instructions (instrumentation
pass) before it is translated into machine code 3c . Furthermore,
DR.SGX adds a small library 3b , which contains functions used
to perform the randomization. This library can be written in a
high-level language like C/C++ and is translated into IR as well.

Additionally, the instrumentation pass examines all allocations
on the stack and transforms those which are larger than a single
cache line into heap allocations. A pointer to the heap allocation
is placed on the stack and the code is modified to access the heap
allocation instead of accessing the stack.

Instrumentation example. Figure 3 illustrates the instrumentation
of a write access to an array. The code snippet in the C file shows
a write access to the 257-th element of an integer array var. The
code snippet in the middle shows the intermediate representation
(IR) of the write operation. The array is accessed by calculating the
pointer to the 257-th element of the array, using the LLVM func-
tion getelementptr. The value 42 is then stored into this memory
location. The instrumented IR is shown in the bottom code snip-
pet. Again, a pointer to the 257-th element of var obtained using
getelementptr and stored in the variable store.arg.int. How-
ever, before storing the value 42, store.arg.int is passed to the
permutation function addrencrypt. The function returns the per-
muted location of the 257-th element of var, which gets cast from
an integer value to a pointer value (inttoptr). The value 42 is then
stored to the permuted location addrencrypt.res.

4.2 Random Permutation
DR.SGX uses run-time data randomization, which is required for
both the unobservable initial randomization as well as the re-
randomizations. This means that the randomized location of data
must be recovered dynamically. Using a purely random permutation
would require storing extensive meta-data, which would then need
to be accessed in an unobservable way.2 Therefore, DR.SGX uses
a pseudo-random permutation function to determine the random
location of data. This approach has two advantages: (1) collisions,
i.e., different element mapped to the same location, are inherently
avoided, and (2) randomized locations can be computed based on
a non-secret algorithm and a key, which is small compared to the
meta-data in the naive approach. However, the permutation func-
tion itself must be resilient against side-channel attacks, otherwise
the adversary can learn the randomization secret and disclose the
accessed memory locations.

We use small-domain encryption for our random permutation
function. The domain size must be in the order of memory size
used by the enclave employing DR.SGX (divided by the size of a

2The need to maintain meta-data is one of the main problems when using ORAM to
protect SGX enclaves from side-channel attacks targeting the enclave’s main memory
accesses.

DR.SGX ACSAC ’19, December 9–13, 2019, San Juan, PR, USA

cache line). In particular, we use the FFX Format-Preserving En-
cryption scheme, which is based on a 10-round Feistel network [5].
As the underlying block cipher for FFX we used AES, for which
the hardware acceleration extension AES-NI [36] is available in all
SGX-enabled CPUs. AES-NI provides both good performance and
resiliency against cache-based side-channel attacks.

Our implementation only supports single-threaded enclaves.
However, standard software-engineering techniques can be em-
ployed to extend the support to multi-threaded enclaves. Only
the re-randomization operations need to be synchronized between
threads.

4.3 Initial Randomization
The initial randomization is particularly challenging since the ad-
versary knows the initial memory layout of an enclave. If we used
standard write operations to copy data from the initial data section
L0 to the randomized section L1, the adversary would be able to
learn the randomized layout.

In DR.SGX we use non-temporal write instructions to tackle
this problem [36]. Non-temporal write instructions provide the
processor with the meta-information that the data will not be used
again soon by the program and it is not necessary to store them in
the cache. On current Intel processors memory write operations
using this instruction immediately affect the DRAM and are not
buffered in the CPU’s cache,3 i.e., they are invisible to the adversary.
Page-granularity side-channels information is hidden by accessing
all heap memory pages for each block.

The secret keys we need as input to our random permutation
are generated by the hardware random number generator inside
the enclave. We use rdseed to obtain true random numbers from
the CPU [36]. This way the adversary cannot influence or obtain
the secret key.

4.4 Stack Randomization
DR.SGX uses the stack only for data elements that are smaller than
a cache line, all other data are moved to the heap where they are
subject to (re-)randomization. For the remaining data elements on
the stack we use an approach inspired by the code randomization
method introduced by Crane et al. [19]. The stack layout of each
function is randomized by reordering the local variables on the
stack. At compile time n variants of each function with different
stack layouts are generated. At run time one function variant is
chosen at random every time it is invoked. DR.SGX uses n = 10
variants for each function, as the empirical evaluation [19] suggests.

4.5 Permutation Buffer
Performing the calculation for the pseudo-random permutations
is costly and needs to be performed for each memory access. To
improve the performance we introduced a buffer for memory trans-
lations (Permutation Buffer in Figure 2). Permutation is performed
at cache line granularity, i.e., all bytes in one cache line in L0 are
mapped as a single block. When this block is moved to L1 it will,
with high probability, be mapping to a different cache line, and to

3We verified this behavior on a Skylake test system by issuing a non-temporal write
followed by a read from the same cache line, and verifying that the read generates a
cache miss on all three cache levels.

yet another cache line in L2, and so on. On recent x86 processors
a cache line is 64 bytes, thus, by storing the result no extra cal-
culations are necessary for memory accesses that fall within the
same cache line. Our buffer is currently 1 KB which allows for a
direct-mapped storage of permutation results for 256 translations.
To prevent leakage through our permutation buffer we access it in
a way which is oblivious to the adversary. For each read operation
to the buffer we simply access all CPU cache lines in our permu-
tation buffer. Moreover, we randomize the location of the items
in the permutation buffer by performing an xor operation with a
randomly-generated value before determining which buffer item to
use. The random value changes and the buffer is invalidated every
time a re-randomization happens.

4.6 Re-Randomization
DR.SGX constantly re-randomizes the memory layout of an enclave.
Figure 2 shows the overall memory layout. The blocks are copied
from Ln to Ln+1 in the same order as they appear in Ln , so the
adversary only observes reads to every block in Ln , in order. Like
in the initial permutation, non-temporal write operations are used
to hide fine-grained writes.

For each cache-line-sized memory block in Ln , DR.SGX needs
to compute the corresponding addresses in Ln and in Ln+1. Hence,
the cost of re-randomization primarily comes from the permutation
calculations required. However, the pipelining of AES instructions
in the CPU makes encrypting multiple addresses together faster
than encrypting them sequentially. This reduces the cost for the re-
randomization and leads to better overall performance of DR.SGX.

5 PERFORMANCE EVALUATION
We evaluated the performance of DR.SGX using the benchmark
suite Nbench [13].4 We use Nbench because it has been previously
used to analyze SGX performance [65], it relies only marginally on
the file system, and it is relatively simple (5217 LoC), so it can easily
be adapted to run inside an SGX enclave. The original version relies
on timestamps to run each benchmark for an equal amount of time;
since timestamps are not available in SGX enclaves we manually
chose for each benchmark the lowest number of iterations that
yielded a run time greater than 100 ms. We measured the run
time of the benchmarks by briefly switching to the non-SGX mode
and reading the hardware time stamp counter. We measured the
overhead due to this mode switch and it is negligible compared
to the overall run time. Our test system is equipped with an Intel
Skylake i7-6700 processor clocked at 3.40 GHz, 128 MB Enclave
Page Cache, running Ubuntu 14.04.4.

Memory overhead. The memory overhead of DR.SGX is mainly
due to (1) heap randomization and (2) stack randomization. For the
heap randomization two memory areas as large as the heap need to
be reserved while the re-randomization is in progress. In our evalu-
ations the heap size was set to values between 512 KB and 4 MB.
Whenever the re-randomization is ongoing an additional 100% for
the heap size is required. Stack randomization is based on providing
n variants for each function. This increases the memory required
4Benchmarking SGX code can be challenging, since well-known benchmark suites
rely on a number of features, including system calls, timestamps, and the file system,
which are not directly available in SGX.

ACSAC ’19, December 9–13, 2019, San Juan, PR, USA F. Brasser, S. Capkun, A. Dmitrienko, T. Frassetto, K. Kostiainen, and A.-R. Sadeghi
O

ve
rh

ea
d

0×

2×

4×

6×

8×

10×

12×

NumSort

Strin
gSort

Bitops
EmFloat

Fourier
Assign

IDEA
Huffman

NNET LU

Geo mean

GEP instr. Function 10× Address encryption

Figure 4: Overhead of each benchmark, using various sub-
sets of DR.SGX.

for the code by factor n. We chose n = 10, thus the overhead is 10×.
The size of the stack itself does not increase. For each invocation at
run time only one of the function variants is used, i.e., the number
of stack frames to be stored on the stack does not increase.

Runtime overhead of DR.SGX modifications. We evaluated
DR.SGX with different subsets of its components active. To get
a better understanding of the impact DR.SGX’s individual compo-
nents we ran all benchmarks multiple times activating one more
components for every repetition. A breakdown of each component’s
overhead is shown in Figure 4.

We first tested our mechanism to move large stack allocations to
the heap, i.e., replacing allocations on the stack larger than 63 bytes
with calls to malloc. We measured a negligible overhead well be-
low 1%, which is too small to be visible in Figure 4. Then, we
tested the instrumentation of reads and writes (LLVM instruction
getelementptr). In DR.SGX, instances of this instruction are fol-
lowed by a call to our permutation function, unless the argument
to the instruction is on the stack. In this test, the identity permu-
tation function was used, which returns immediately. Therefore
overhead reflects the impact of the instrumentation alone. We mea-
sured overheads between 0 and 102%, with a geometric mean of 39%
(GEP instr. in Figure 4). Next, we added our stack randomization
using function duplication. The geometric mean of the additional
overhead is 46%, while the maximum is 135% (Function 10× in Fig-
ure 4). Finally, we tested our complete system (without periodic
re-randomization). Overheads range between 0.39× and 12.77×,
with a geometric mean of 4.36×. The benchmarks Assign and LU
have the biggest overheads, 10.56× and 12.77× respectively, due
to high miss rates in our permutation buffer (their miss rates are
∼ 13× higher).

Runtime overhead of re-randomization. Next, we assessed the
impact of various window sizes w and heap sizes h on the run
time overhead and re-randomization window duration. We chose
our heap size h ∈ {4 MB, 2 MB, 1 MB, 512 KB} but other values
are also possible. We measured the time required to perform a
re-randomization by dividing the CPU cycles required by the pro-
cessor’s nominal speed, 3.4 GHz. The re-randomization requires
7.31 ms, 4.07 ms, 2.26 ms, and 1.26 ms respectively for h = 4 MB,
h = 2 MB, h = 1 MB, h = 512 KB.

O
ve

rh
ea

d

0×

5×

10×

15×

20×

25×

30×

NumSort

Strin
gSort

Bitops
EmFloat

Fourier
Assign

IDEA
Huffman

NNET LU

Geo Mean

No re-random. w = 10M w = 3M w = 1M w = 300K

Figure 5: Overhead of each benchmark, with heap size h
= 4 MB, without re-randomization and with various re-
randomization windowsw .

Figure 6: Geometricmean of the overheads, for various heap
sizesh and variouswindow sizesw . The black line represents
the overhead without re-randomization.

We first measured the run time overheads for h = 4 MB, w ∈

{10 M, 3 M, 1 M, 300 K}. In Figure 5, the left-most bars in each group
represent the overhead without re-randomization (like Figure 4),
with a geometric mean of 4.36×. Re-randomization every 10 million
accesses (w = 10 M) increases the overhead slightly (geometric
mean of 4.76×). Reducing the window to 3 M, 1 M, and 300 K brings
the geometric mean of the overhead to 5.45×, 7.29×, and 12.21×.

We then measured the overhead for smaller heap sizes. We ex-
pected that halving both the heap size and the window size, i.e.,
re-randomizing a heap half as big twice as often, would yield similar
performance results. Figure 6 shows the overhead depending on
the window size for various heap sizes and confirms our intuition.
Each line refers to a heap size twice as big as the line to its left. The
black line at 4.26× is the overhead measured in the case without
re-randomization and represents limw→∞ of the overhead; in other
words, increasing the values ofw further would bring diminishing
results.

Summary. The performance of our solution depends heavily on
the user parameters. For example, the overhead is 4.8× for parame-
ters h = 1MB andw = 2.5 M.

Developers and system administrators can adjust the parame-
ters of DR.SGX based on the memory needs of their application

DR.SGX ACSAC ’19, December 9–13, 2019, San Juan, PR, USA

and the available computing resources. For example, if the deploy-
ment scenario requires 1 MB of heap memory and allows up to
8× overhead, the window size w can be set to 250 K for maximal
re-randomization rate and security (see Figure 6). We consider this
task of parameter tuning feasible for most developers. A typical
developer may not be able to assess subtle sources of information
leakage for correct source code annotation, but usually the devel-
oper knows the application’s performance requirements and can
set h andw accordingly.

Finally, we emphasize that in many SGX application scenarios,
the overhead of the enclave (imposed by DR.SGX) is not directly
the overhead of the entire application. For example, SGX-based
applications that perform networking or database queries spend
most of their time in the unprotected part of the application, and
therefore the slowdown of the enclave represents only a minor
part of the application’s performance. Thus, in many cases, a high
enclave overhead can still be acceptable for the overall performance.

6 SECURITY ANALYSIS
In this section we analyze the security of DR.SGX. We focus on the
security properties of our novel heap data protection mechanism.
Our stack data protection follows a known approach, evaluated
in [19].

The goal of the adversary is to recover secret data from the victim
enclave based on secret-dependent (heap) data access patterns to
data. Recall that we consider a powerful adversary that gets a perfect
trace of all cache and page events. Since all known attacks [11, 31,
51, 64] exhibit significant noise in the cache channel, this is an over-
approximation of the capabilities of today’s attackers and allows
us to reason about the effectiveness of our solution against more
powerful future adversaries.

In a data-driven side-channel attack, the adversary leaks infor-
mation by monitoring secret-dependent access patterns. We model
this as follows. The targeted victim enclave has secret data s of any
length. The secret could be a cryptographic key, medical data, finan-
cial information or sensitive machine learning training sets. The
enclave has a data structure d that consists of n elements (e1, ..., en)
and is accessed based on s . The data structure could be a look-up
table, S-box, index, or in-memory database. The size of each ele-
ment ei is the cache line size (smaller elements cannot be attacked,
larger elements can be modeled as multiple elements). Based on
the value of s , the enclave makes k accesses to different elements of
d . Such access pattern determines the value of s . The enclave may
also make predictable accesses to d (e.g., iterate through it during
initialization).

6.1 Finding Attack Position in Trace
We start our analysis by explaining how the adversary can find the
“attack position” in the side-channel trace, i.e., the position where
(permuted) secret-dependent data accesses take place. The adver-
sary can compile the victim enclave without DR.SGX protection and
instrument those parts of the enclave where the secret-dependent
accesses to d happen. The adversary can then run the instrumented
enclave, monitor side-channels, and based on the instrumentation
learn the position in the trace where the secret-dependent accesses
are located. After that, the adversary can run the victim enclave that

is protected with DR.SGX using the same inputs and again monitor
side-channels. Assuming a deterministic enclave,5 the adversary
obtains a protected trace that includes additional randomization
events to the trace (see Figure 7). Next, the adversary can filter out
all randomization events. Since we use non-temporal (NT) writes
that bypass the cache for randomization writes, the adversary finds
each page event pi that has no corresponding cache event ci in
the trace. For each such randomization write, the previous event
in the trace is a read due to the randomization. The adversary re-
moves all randomization events. The known attack position in the
non-protected trace corresponds to the same position in the filtered
protected trace.

6.2 Inferring Secret Enclave Data
Once the attack position is known, the adversary can attempt to
infer secret data s from the permuted memory accesses in the attack
trace. The adversary’s success depends on the type of the victim
enclave.

No predictable accesses. We first consider enclaves that make no
predictable accesses to d (i.e., the enclave accesses d only based on
a pattern that is derived from the secret data s). For such enclaves,
DR.SGX provides strong protection due to its initial randomization
that is illustrated in Figure 7. The enclave’s data is copied from the
known, original memory layout L0 to a new randomized memory
layout L1 in blocks of cache line size using NT writes. For each
block, the initial randomization process performs one read access
to the original memory layout and NT writes to all memory pages.
Because NT writes hide the accessed address at cache-line gran-
ularity, the adversary gains no knowledge of the new location in
L1. The same process is repeated for every memory block and in
the end the location of each block in L1 is equally likely for the
adversary.

By observing the permuted side-channel trace, the adversary
may infer execution characteristics such as frequencies of accesses
to the same memory address (e.g., address a was accessed x times).
However, because permuted addresses a can refer to any actually
accessed addresses, such frequency analysis does not help the adver-
sary to infer the secret data s , unless the enclave exhibits predictable
access patterns which we discuss below.

Assuming no predictable access patterns, the best option for the
adversary is a guessing attack. The adversary knows the permuted
addresses of k secret-dependent accesses. For each access, every
address, and thus every data structure element ei , is equally likely.
After observing k distinctive accesses to n elements, the number of
possible alternatives will be given by an arrangement of k from n:
Akn =

n!
(n−k)! . For example, a data structure of n = 50 elements and

any number of secret-dependent accesses resulting in 25 distinctive
accesses to the data structure, the amount of arrangements is 1.96×
1039, which gives the chance of a random guess of approximately
2−131. We conclude that DR.SGX provides strong protection for
enclaves that have no predictable accesses to the data structure d .

5We consider a deterministic enclave, because that is the best case the for adversary
for building the tracking tree. Thus, the following analysis based on this assumption
represents the best case for the adversary regarding finding the attack position in the
trace.

ACSAC ’19, December 9–13, 2019, San Juan, PR, USA F. Brasser, S. Capkun, A. Dmitrienko, T. Frassetto, K. Kostiainen, and A.-R. Sadeghi

initial randomization runtime re-randomization

tracked data
element (ei)

possible location
(adversary’s view)

πn+2Ln+1

…

Ln+2 Ln+3πn+3 πn+4

… …

Ln+4

…

Ln

…

πn+1
L1

…

page 0

page 1

page 2

page 3

page 1023

page 1022

page 1021

L0

…

π1

pi = page event
(high address bits)

ci = cache event
(mid address bits)

side-channel
trace

p1

c1

p2

c2

p3

c3

p4 p5 p6

c4 c6

p7

… c37

… p37

…

…

randomization
write

randomization
read

randomization events

e1 e2 e3 e4 … en

data
structure d

tracking tree

secret data s

memory access

side-channel monitoring

Figure 7: Location tracking. By identifying missing cache events in the trace, the adversary can learn the re-randomization
writes (marked in blue) and preceding re-randomization reads (marked in green). The initial randomization hides destination
addresses completely. The adversary can build a tracking tree, where the source address of each re-randomization is known
with cache-line granularity and the destination address with page granularity. After few re-randomization rounds, the tracked
memory location can reside in any memory location.

Predictable accesses. The second case that we consider is a vic-
tim enclave that exhibits predictable access patterns to d , e.g., the
enclave may initialize d in an order that is known to the adversary.
The enclave may also access elements of d a predictable number
of times. Such predictable accesses in the trace will disclose the
current permuted memory addresses for each accessed element ei .

Figure 7 illustrates an example scenario, where the permuted
address of element ei is revealed to the adversary in memory lay-
out Ln . The next re-randomization round moves the data of that
element to a new location in layout Ln+1. Since the move operation
is implemented using NT writes, the adversary learns the new page
in Ln+1, but not the fine-grained location. The leakage of the target
page allows the adversary to construct a tracking tree for element
ei .

The expansion of the tracking tree depends on the size of the
used memory in the victim enclave. For example, if the victim en-
clave uses 2 MB memory (out of total 4 MB address space), each
memory page contains on the average 32 blocks. On the next re-
randomization round, each of these blocks are moved to new mem-
ory locations in layout Ln+2. Because the adversary does not know
the exact location of element ei in Ln+1, he cannot distinguish
when the element is moved from the set of 32 move operations
that use the same page as the source.6 From the adversary’s point
of view, after two re-randomization rounds, the element can re-
side in 32 pages with high probability. After four re-randomization
6Our implementation randomizes 8 blocks at once which makes tracing even more
difficult for the adversary.

rounds, the adversary must track 323 = 32, 768 re-randomization
moves. Although some of the moves may write to the same target
pages, the tracking tree covers all 1,024 memory pages in Ln+4
with high probability, and thus all memory locations are equally
likely for the adversary. For enclaves with smaller heap size (512
KB), similar effect can be achieved after three rounds. The shortest
re-randomization window we tested in Section 5 lasted 0.37 ms, in
which case the required three (or four) re-randomization rounds
would be performed after 1.1 ms (or 1.5 ms) of enclave execution.
We conclude that enclaves with predictable accesses can leak infor-
mation. If the secret-dependent access happens after the predictable
access and before a sufficient number of re-randomization rounds,
the secret may be leaked to the adversary. By touching additional
memory pages on every re-randomization write, the window can
be reduced to fewer rounds. Alternatively, re-randomization rounds
can be performed more frequently. Both approaches increase run-
time overhead.

7 RELATEDWORK
Previous research has proposed various side-channel defenses. In
this section we review them and compare existing defenses to
DR.SGX.

ORAM and Oblivious Execution. Oblivious RAM (ORAM) [28–
30, 60, 69, 76] refers to schemes that hide the memory access pattern
of a trusted client (e.g., CPU or network client) to an untrusted
and encrypted memory (e.g., DRAM or server) by introducing fake

DR.SGX ACSAC ’19, December 9–13, 2019, San Juan, PR, USA

accesses and shuffling the encryptedmemory elements such that the
observable access pattern is independent of the actual access pattern.
Oblivious execution architectures [44, 45, 48] attempt to hide all
observable effects of program execution, including both memory
accesses (code and data) and timing information. Implementing
ORAM for every enclave memory access is extremely expensive.
Obfuscuro [1], a program obfuscation system, implements both
ORAM and oblivious execution, with performance overheads of
83× on average and up to 220×. DR.SGX’s performance overhead
is at least one order of magnitude lower than Obfuscuro.

Sinha [67] proposes a compiler-based tool to protect code written
in their custom language from paging-based side-channel attacks.
In contrast, DR.SGX works with existing code in C/C++ and also
mitigates cache-based side-channel attacks.

Raccoon [59] is a system that provides oblivious data access only
for developer-annotated enclave data, thus reducing the overhead.
Memory accesses are hidden by either using ORAM or by streaming
over the entire data structure. In contrast, DR.SGX does not rely
on developers to identify and annotate data that might leak.

ZeroTrace [62] is an oblivious data structure framework for SGX
that runs on top of a software memory controller. ZeroTrace is
designed to hide memory access to resources outside of an enclave,
e.g., to the hard disk drive. Importantly, it is not designed to make all
memory accesses of an enclave to its own main memory oblivious,
like DR.SGX does. Furthermore, ZeroTrace requires the developer
to use the memory controller interface for all access that should be
protected. DR.SGX does not require similar developer assistance.

Ohrimenko et. al. propose data-oblivious machine learning algo-
rithms [53] and a side-channel resilient MapReduce framework [52]
for SGX. Fuhry et. al. propose a page-fault side-channel secure
database [27]. Such defenses are tailored to specific enclaves and
algorithms, while DR.SGX applies to arbitrary enclaves.

Transactional memory. Some of the known SGX side-channel
attacks interrupt the victim enclave repeatedly [77]. A correspond-
ing defense is to enable the victim enclave to detect interruption
and take counteractive measures, such as stopping its execution.
T-SGX [66] leverages the Intel Transactional Synchronization Ex-
tension (TSX) to detect asynchronous enclave exits, e.g., due to
interrupts of page faults. Déjá Vu [17] monitors the execution time
of an enclave to detect a slowdown caused by frequent interrupts.
These defenses do not prevent attacks that work without inter-
rupts [11, 31, 64]. DR.SGX is applicable to such attacks.

Cloak [33] uses TSX to preform atomic memory operations that
hide sensitive memory accesses. Before sensitive memory is ac-
cessed, all cache lines are touched (primed) by the enclave, and thus
the adversary learns nothing about the enclave’s sensitive accesses.
Cloak relies on the developer to annotate sensitive data structures
that should be protected from side-channel attacks and requires
TSX, which is not supported by all SGX processors. DR.SGX does
not require similar developer assistance and works on all SGX pro-
cessors.

Software diversity. Crane et al. [19] propose to apply dynamic
software diversity, an effective countermeasure against code reuse
attacks and reverse engineering, to defend against cache-based side-
channel attacks. The approach is to create multiple copies of code
and choose one of them at the time of execution. We apply this

technique to protect stack data. However, the solution by Crane et
al. is specifically targeting protection of cryptographic algorithms.
In contrast, DR.SGX can protect non-cryptographic enclaves.

Randomization. Address Space Layout Randomization
(ASLR) [57] is a common defensive technique against memory
corruption attacks such as ROP [61]. ASLR hides the locations of
memory regions (code and data) by randomizing their offsets at
load time. More fine-grained solutions randomize code (but not
data) at function [38], block [21, 75], or instruction [34, 56] level.

Such randomization techniques are insufficient as a side-channel
defense for SGX. Offset-based ASLR is not effective since the priv-
ileged attacker is responsible for memory management and thus
learns the “secret” randomized offsets. Code randomization, as im-
plemented in SGX-Shield [65], is not complete [7] and does not
prevent attacks that monitor data accesses [11, 64, 77].

New cache architectures. Cache-based side channels can be ad-
dressed by changes in the cache architecture. The two common
approaches are (i) cache partitioning [23, 24, 55, 74], dividing the
cache into partitions that are not shared between processes, and
(ii) cache access obfuscation [22, 37, 40, 46, 74], where the goal
is to obfuscate the obtainable side-channel information, either by
introducing noise or by randomizing the address to cache line map-
ping. Such defenses require hardware changes and are limited to
cache attacks. DR.SGX works on current processors and applies to
additional side-channels (e.g., page faults).

8 DISCUSSION
Fine-grained leaks. Recent works [50, 78] have investigated the

possibility of leaking information through a side-channel with a
granularity smaller than a cache line. However, they are not appli-
cable in our case.

CacheBleed [78] exploits cache bank conflicts to leak fine-grained
information. This attack does not apply to SGX CPUs due to an
updated cache design. We verified this experimentally.

MemJam [50] uses read-after-write false dependencies to intro-
duce latency when a victim program reads data with a specific
page offset. By measuring the run time of the victim program a
high number of times while jamming different page offsets, the
attacker can infer which offsets are read more often by the victim.
This attack can leak information with a four byte granularity, but
requires an extremely high number of runs (50 million runs for an
attack against a simple and deterministic SGX enclave). However,
with DR.SGX, the page offsets of data change between different
runs, making the correlation of timing information for different
runs exponentially more involved. Moreover, the accesses due to
DR.SGX’s own code generate a significant amount of noise, which
complicates the matter further. Finally, the code of DR.SGX itself
was designed to not be vulnerable to MemJam attacks, e.g., by
randomizing the permutation buffer layout (see Section 4.5).

Leakage quantification. Quantification of cache-based informa-
tion leakage has been studied in previous works. For example,
CacheAudit [25] is a well-known static analysis framework that
given an x86 binary and a cache configuration yields an upper

ACSAC ’19, December 9–13, 2019, San Juan, PR, USA F. Brasser, S. Capkun, A. Dmitrienko, T. Frassetto, K. Kostiainen, and A.-R. Sadeghi

bound on the amount of information leakage via cache- and time-
based side-channels. The information leakage is quantified based
on the number of side-channel observations an attacker can obtain.

CacheAudit, and similar existing tools, are not applicable to our
scenario for two main reasons. First, in the model of CacheAudit,
randomly permuted observations contribute to the total number
of observations, even though the attacker may not learn any use-
ful information from such accesses. Second, CacheAudit does not
consider information leakage through other channels, such as page
faults, that can be correlated with cache observations. Therefore,
CacheAudit cannot be used to quantify informations leakage of
DR.SGX.

9 CONCLUSION
In this paper we have proposed semantic-agnostic data randomiza-
tion as a new defensive approach against side-channel attacks on
SGX. We have designed and implemented DR.SGX, which allows to
instrument enclave code such that all data locations in enclavemem-
ory are permuted at cache-line granularity and re-randomized at
runtime. Unlike previous defenses, our solution allows non-expert
developers to harden their enclaves against various data-driven
attack strategies with an adjustable security-performance trade-off.

ACKNOWLEDGMENTS
The authors would like to thank Urs Müller for his feedback in the
initial discussions that led to this work.
This work has been supported by the German Research Founda-
tion (DFG) as part of projects HWSec, P3 and S2 within the CRC
1119 CROSSING, by the German Federal Ministry of Education
and Research (BMBF) and the Hessen State Ministry for Higher
Education, Research and the Arts (HMWK) within CRISP, by BMBF
within the projects iBlockchain and CloudProtect, and by the Intel
Collaborative Research Institute for Collaborative Autonomous &
Resilient Systems (ICRI-CARS).

REFERENCES
[1] Adil Ahmad, Byunggill Joe, Yuan Xiao, Yinqian Zhang, Insik Shin, and Byoungy-

oung Lee. 2019. Obfuscuro: A Commodity Obfuscation Engine on Intel SGX. In
Network and Distributed System Security Symposium.

[2] ARM Limited. 2009. ARM Security Technology – Building a Secure System using
TrustZone Technology. http://infocenter.arm.com/help/topic/com.arm.doc.prd29-
genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf.

[3] Lejla Batina, Patrick Jauernig, Nele Mentens, A-R Sadeghi, and Emmanuel Stapf.
2019. In Hardware We Trust: Gains and Pains of Hardware-assisted Security.
(2019).

[4] Andrew Baumann,Marcus Peinado, and GalenHunt. 2014. Shielding Applications
from an Untrusted Cloud with Haven.

[5] Mihir Bellare, Phillip Rogaway, and Terence Spies. 2010. The FFX Mode of Opera-
tion for Format-Preserving Encryption. Technical Report.

[6] David Bigelow, Thomas Hobson, Robert Rudd, William Streilein, and Hamed
Okhravi. 2015. Timely rerandomization for mitigating memory disclosures. In
ACM SIGSAC Conference on Computer and Communications Security. ACM.

[7] Andrea Biondo, Mauro Conti, Lucas Davi, Tommaso Frassetto, and Ahmad-Reza
Sadeghi. 2018. The Guard’s Dilemma: Efficient Code-Reuse Attacks Against Intel
SGX. In 27th USENIX Security Symposium.

[8] Ferdinand Brasser, Lucas Davi, Abhijitt Dhavlle, Tommaso Frassetto, Sai
Manoj Pudukotai Dinakarrao, Setareh Rafatirad, Ahmad-Reza Sadeghi, Avesta
Sasan, Hossein Sayadi, Shaza Zeitouni, et al. 2018. Advances and throwbacks
in hardware-assisted security: special session. In Proceedings of the International
Conference on Compilers, Architecture and Synthesis for Embedded Systems. IEEE
Press, 15.

[9] Ferdinand Brasser, Tommaso Frassetto, Korbinian Riedhammer, Ahmad-Reza
Sadeghi, Thomas Schneider, and Christian Weinert. 2018. VoiceGuard: Secure

and Private Speech Processing. In Interspeech 2018. International Speech Com-
munication Association (ISCA), 1303–1307.

[10] Ferdinand Brasser, David Gens, Patrick Jauernig, Ahmad-Reza Sadeghi, and
Emmanuel Stapf. 2019. SANCTUARY: ARMing TrustZone with User-space
Enclaves. In 26th Annual Network & Distributed System Security Symposium
(NDSS).

[11] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen, Srdjan
Capkun, and Ahmad-Reza Sadeghi. 2017. Software Grand Exposure: SGX Cache
Attacks Are Practical. In USENIX Workshop on Offensive Technologies.

[12] E. Brickell, G. Graunke, and J.-P. Seifert. 2006. Mitigating cache/timing attacks in
AES and RSA software implementations. In RSA Conference 2006, session DEV-203.

[13] BYTE Magazine and Uwe F. Mayer. 1995-2011. BYTEmark benchmark (nbench),
port to Linux. Original address http://www.tux.org/~mayer/linux/bmark.html,
now archived at https://web.archive.org/web/20151215162836/http://www.tux.
org/~mayer/linux/bmark.html.

[14] Luigi Catuogno, Alexandra Dmitrienko, Konrad Eriksson, Dirk Kuhlmann, Gian-
luca Ramunno, Ahmad-Reza Sadeghi, Steffen Schulz, Matthias Schunter, Marcel
Winandy, and Jing Zhan. 2009. Trusted Virtual Domains – Design, Implementa-
tion and Lessons Learned. In International Conference on Trusted Systems.

[15] Swarup Chandra, Vishal Karande, Zhiqiang Lin, Latifur Khan, Murat Kantar-
cioglu, and Bhavani Thuraisingham. 2017. Securing Data Analytics on SGX with
Randomization. In European Symposium on Research in Computer Security.

[16] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqiang Lin, and
Ten H. Lai. 2018. SgxPectre Attacks: Stealing Intel Secrets from SGX Enclaves
via Speculative Execution. arXiv:arXiv:1802.09085v3

[17] Sanchuan Chen, Xiaokuan Zhang, Michael K. Reiter, and Yinqian Zhang. 2017.
Detecting Privileged Side-Channel Attacks in Shielded Execution with Déjá Vu.
In ACM Symposium on Information, Computer and Communications Security.

[18] Victor Costan and Srinivas Devadas. 2016. Intel SGX Explained. Technical Report.
Cryptology ePrint Archive. Report 2016/086. https://eprint.iacr.org/2016/086.pdf.

[19] Stephen Crane, Andrei Homescu, Stefan Brunthaler, Per Larsen, and Michael
Franz. 2015. Thwarting Cache Side-Channel Attacks Through Dynamic Software
Diversity. In Network and Distributed System Security Symposium.

[20] Poulami Das, Lisa Eckey, Tommaso Frassetto, David Gens, Kristina Hostáková,
Patrick Jauernig, Sebastian Faust, and Ahmad-Reza Sadeghi. 2019. FastKitten:
Practical Smart Contracts on Bitcoin. In 28th USENIX Security Symposium.

[21] Lucas Davi, Alexandra Dmitrienko, Stefan Nürnberger, and Ahmad-Reza Sadeghi.
2013. Gadge Me If You Can - Secure and Efficient Ad-hoc Instruction-Level
Randomization for x86 and ARM. In ACM Symposium on Information, Computer
and Communications Security.

[22] Ghada Dessouky, Tommaso Frassetto, and Ahmad-Reza Sadeghi. 2020. HybCache:
Hybrid Side-Channel-Resilient Caches for Trusted Execution Environments. In
29th USENIX Security Symposium.

[23] Leonid Domnitser, Aamer Jaleel, Jason Loew, Nael Abu-Ghazaleh, and Dmitry
Ponomarev. 2012. Non-monopolizable caches: Low-complexity mitigation of
cache side channel attacks. ACM Transactions on Architecture and Code Optimiza-
tion (TACO) 8, 4 (2012).

[24] Leonid Domnitser, Aamer Jaleel, Jason Loew, Nael Abu-Ghazaleh, and Dmitry
Ponomarev. 2012. Non-monopolizable Caches: Low-complexity Mitigation of
Cache Side Channel Attacks. ACM Transactions on Architecture and Code Opti-
mization (2012). https://doi.org/10.1145/2086696.2086714

[25] Goran Doychev, Boris Köpf, Laurent Mauborgne, and Jan Reineke. 2015. Cacheau-
dit: A tool for the static analysis of cache side channels. ACM Transactions on
Information and System Security (TISSEC) 18, 1 (2015).

[26] Tommaso Frassetto, David Gens, Christopher Liebchen, and Ahmad-Reza Sadeghi.
2017. JITGuard: Hardening Just-in-time Compilers with SGX. In 24th ACM
Conference on Computer and Communications Security (CCS).

[27] Benny Fuhry, Raad Bahmani, Ferdinand Brasser, Florian Hahn, Florian Ker-
schbaum, and Ahmad-Reza Sadeghi. 2017. HardIDX: Practical and Secure Index
with SGX. In Conference on Data and Applications Security and Privacy (DBSec).

[28] Oded Goldreich. 1987. Towards a theory of software protection and simulation
by oblivious RAMs. In Annual ACM Symposium on Theory of Computing. ACM.

[29] Oded Goldreich and Rafail Ostrovsky. 1996. Software Protection and Simulation
on Oblivious RAMs. J. ACM (1996).

[30] Michael T Goodrich, Michael Mitzenmacher, Olga Ohrimenko, and Roberto
Tamassia. 2012. Privacy-preserving group data access via stateless oblivious RAM
simulation. In Annual ACM-SIAM symposium on Discrete Algorithms. Society for
Industrial and Applied Mathematics.

[31] Johannes Götzfried, Moritz Eckert, Sebastian Schinzel, and Tilo Müller. 2017.
Cache Attacks on Intel SGX. In European Workshop on Systems Security.

[32] Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. 2018. Transla-
tion Leak-aside Buffer: Defeating Cache Side-channel Protections with TLB At-
tacks. In 27th USENIX Security Symposium. https://www.usenix.org/conference/
usenixsecurity18/presentation/gras

[33] Daniel Gruss, Julian Lettner, Felix Schuster, Olya Ohrimenko, Istvan Haller, and
Manuel Costa. 2017. Strong and Efficient Cache Side-Channel Protection using
Hardware Transactional Memory. In 26th USENIX Security Symposium.

http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://www.tux.org/~mayer/linux/bmark.html
https://web.archive.org/web/20151215162836/http://www.tux.org/~mayer/linux/bmark.html
https://web.archive.org/web/20151215162836/http://www.tux.org/~mayer/linux/bmark.html
http://arxiv.org/abs/arXiv:1802.09085v3
https://eprint.iacr.org/2016/086.pdf
https://doi.org/10.1145/2086696.2086714
https://www.usenix.org/conference/usenixsecurity18/presentation/gras
https://www.usenix.org/conference/usenixsecurity18/presentation/gras

DR.SGX ACSAC ’19, December 9–13, 2019, San Juan, PR, USA

[34] Jason D. Hiser, Anh Nguyen-Tuong, Michele Co, Matthew Hall, and Jack W.
Davidson. 2012. ILR: Where’d My Gadgets Go?. In IEEE Symposium on Security
and Privacy.

[35] Intel. 2015. Intel Software Guard Extensions. Tutorial slides. https://software.
intel.com/sites/default/files/332680-002.pdf. Reference Number: 332680-002,
revision 1.1.

[36] Intel. 2016. Intel 64 and IA-32 Architectures Software Developer’s Man-
ual. http://www.intel.com/content/www/us/en/architecture-and-technology/64-
ia-32-architectures-software-developer-manual-325462.html.

[37] G. Keramidas, A. Antonopoulos, D. N. Serpanos, and S. Kaxiras. 2008. Non
deterministic caches: A simple and effective defense against side channel attacks.
Design Automation for Embedded Systems (2008).

[38] Chongkyung Kil, Jinsuk Jun, Christopher Bookholt, Jun Xu, and Peng Ning. 2006.
Address Space Layout Permutation (ASLP): Towards Fine-Grained Randomization
of Commodity Software. In Annual Computer Security Applications Conference.

[39] Paul Kocher, Jann Horn, Anders Fogh, , Daniel Genkin, Daniel Gruss, Werner
Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. 2019. Spectre Attacks: Exploiting Speculative Execu-
tion. In 40th IEEE Symposium on Security and Privacy (S&P’19).

[40] Jingfei Kong, Onur Aciiçmez, Jean-Pierre Seifert, and Huiyang Zhou. 2009.
Hardware-software integrated approaches to defend against software cache-
based side channel attacks. In IEEE International Symposium on High Performance
Computer Architecture. IEEE.

[41] Kubilay Ahmet Küçük, Andrew Paverd, Andrew Martin, N. Asokan, Andrew
Simpson, and Robin Ankele. 2016. Exploring the Use of Intel SGX for Secure
Many-Party Applications.

[42] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim, and Marcus
Peinado. 2017. Inferring Fine-grained Control Flow Inside SGX Enclaves with
Branch Shadowing. In USENIX Security Symposium.

[43] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval
Yarom, and Mike Hamburg. 2018. Meltdown: Reading Kernel Memory from User
Space. In 27th USENIX Security Symposium (USENIX Security 18).

[44] Chang Liu, Austin Harris, Martin Maas, Michael Hicks, Mohit Tiwari, and Elaine
Shi. 2015. Ghostrider: A hardware-software system for memory trace oblivious
computation. ACM SIGARCH Computer Architecture News 43, 1 (2015).

[45] Chang Liu, Michael Hicks, and Elaine Shi. 2013. Memory trace oblivious program
execution. In IEEE Computer Security Foundations Symposium.

[46] Fangfei Liu and Ruby B. Lee. 2014. Random Fill Cache Architecture. In 47th
Annual IEEE/ACM International Symposium on Microarchitecture.

[47] LLVM Foundation. 2019. The LLVM Compiler Infrastructure. https://llvm.org.
[48] Martin Maas, Eric Love, Emil Stefanov, Mohit Tiwari, Elaine Shi, Krste Asanovic,

John Kubiatowicz, and Dawn Song. 2013. Phantom: Practical oblivious com-
putation in a secure processor. In ACM SIGSAC Conference on Computer and
Communications Security.

[49] Jonathan M. McCune, Yanlin Li, Ning Qu, Zongwei Zhou, Anupam Datta, Vir-
gil Gligor, and Adrian Perrig. 2010. TrustVisor: Efficient TCB Reduction and
Attestation. In IEEE Symposium on Security and Privacy.

[50] Ahmad Moghimi, Thomas Eisenbarth, and Berk Sunar. 2018. MemJam: A False
Dependency Attack Against Constant-Time Crypto Implementations in SGX. In
Topics in Cryptology – CT-RSA 2018, Nigel P. Smart (Ed.). Springer International
Publishing.

[51] AhmadMoghimi, Gorka Irazoqui, and Thomas Eisenbarth. 2017. CacheZoom: How
SGX Amplifies The Power of Cache Attacks. Technical Report. arXiv:1703.06986
[cs.CR]. https://arxiv.org/abs/1703.06986.

[52] Olga Ohrimenko, Manuel Costa, Cédric Fournet, Christos Gkantsidis, Markulf
Kohlweiss, and Divya Sharma. 2015. Observing and preventing leakage in MapRe-
duce. In ACM SIGSAC Conference on Computer and Communications Security.
ACM.

[53] Olga Ohrimenko, Felix Schuster, Cedric Fournet, Aasthaa Meht, Sebastian
Nowozin, Kapil Vaswani, andManuel Costa. 2016. Oblivious Multi-Party Machine
Learning on Trusted Processors. In USENIX Security Symposium.

[54] Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache Attacks and Counter-
measures: The Case of AES. In The Cryptographers’ Track at the RSA Conference
on Topics in Cryptology.

[55] D. Page. 2005. Partitioned Cache Architecture as a Side-Channel Defence Mecha-
nism. In IACR Eprint archive.

[56] Vasilis Pappas, Michalis Polychronakis, and Angelos D. Keromytis. 2012. Smash-
ing the Gadgets: Hindering Return-Oriented Programming Using In-Place Code
Randomization. In IEEE Symposium on Security and Privacy.

[57] PaX Team. [n.d.]. PaX address space layout randomization (ASLR). http://pax.
grsecurity.net/docs/aslr.txt.

[58] Bernardo Portela, Manuel Barbosa, Guillaume Scerri, Bogdan Warinschi, Raad
Bahmani, Ferdinand Brasser, and Ahmad-Reza Sadeghi. 2017. Secure Multiparty
Computation from SGX. In Financial Cryptography and Data Security.

[59] Ashay Rane, Calvin Lin, and Mohit Tiwari. 2015. Raccoon: Closing Digital
Side-channels Through Obfuscated Execution. In USENIX Security Symposium.
http://dl.acm.org/citation.cfm?id=2831143.2831171

[60] Ling Ren, ChristopherW Fletcher, Albert Kwon, Emil Stefanov, Elaine Shi, Marten
Van Dijk, and Srinivas Devadas. 2015. Constants Count: Practical Improvements
to Oblivious RAM. In USENIX Security Symposium.

[61] Ryan Roemer, Erik Buchanan, Hovav Shacham, and Stefan Savage. 2012. Return-
oriented programming: Systems, languages, and applications. ACM Transactions
on Information and System Security 15, 1 (2012).

[62] Sajin Sasy, Sergey Gorbunov, and Christopher Fletcher. 2017. ZeroTrace: Obliv-
ious Memory Primitives from Intel SGX. IACR Cryptology ‘ Archive Report
2017/549 (2017).

[63] Felix Schuster, Manuel Costa, Cedric Fournet, Christos Gkantsidis, Marcus
Peinado, Gloria Mainar-Ruiz, and Mark Russinovich. 2015. VC3: Trustworthy
Data Analytics in the Cloud Using SGX.

[64] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice, and Stefan
Mangard. 2017. Malware Guard Extension: Using SGX to Conceal Cache Attacks.
In Detection of Intrusions and Malware, and Vulnerability Assessment.

[65] Jaebaek Seo, Byounyoung Lee, Seongmin Kim, Ming-Wei Shih, Insik Shin, Dongsu
Han, and Taesoo Kim. 2017. SGX-Shield: Enabling Address Space Layout Random-
ization for SGX Programs. InNetwork and Distributed System Security Symposium.

[66] Ming-Wei Shih, Sangho Lee, Taesoo Kim, and Marcus Peinado. 2017. T-SGX:
Eradicating Controlled-Channel Attacks Against Enclave Programs. In Network
and Distributed System Security Symposium.

[67] Rohit Sinha, Sriram Rajamani, and Sanjit A. Seshia. 2017. A compiler and verifier
for page access oblivious computation. In Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering - ESEC/FSE 2017. ACM Press.
https://doi.org/10.1145/3106237.3106248

[68] Julian Stecklina and Thomas Prescher. 2018. LazyFP: Leaking FPU Register
State using Microarchitectural Side-Channels. CoRR abs/1806.07480 (2018).
arXiv:1806.07480 http://arxiv.org/abs/1806.07480

[69] Emil Stefanov, Marten Van Dijk, Elaine Shi, Christopher Fletcher, Ling Ren,
Xiangyao Yu, and Srinivas Devadas. 2013. Path ORAM: an extremely simple
oblivious RAM protocol. In ACM SIGSAC Conference on Computer and Communi-
cations Security.

[70] Chia-che Tsai, Donald E. Porter, and Mona Vij. 2017. Graphene-SGX: A Practical
Library OS for Unmodified Applications on SGX. In USENIX Annual Technical
Conference.

[71] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank
Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx.
2018. Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Transient
Out-of-Order Execution. In 27th USENIX Security Symposium.

[72] Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza, Frank Piessens, and Raoul
Strackx. 2017. Telling Your Secrets without Page Faults: Stealthy Page Table-
Based Attacks on Enclaved Execution. In 26th USENIX Security Symposium.

[73] Stephan van Schaik, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi. 2018.
Malicious Management Unit: Why Stopping Cache Attacks in Software is Harder
Than You Think. In 27th USENIX Security Symposium. https://www.usenix.org/
conference/usenixsecurity18/presentation/van-schaik

[74] Zhenghong Wang and Ruby B. Lee. 2008. A Novel Cache Architecture with En-
hanced Performance and Security. In Annual IEEE/ACM International Symposium
on Microarchitecture.

[75] Richard Wartell, Vishwath Mohan, Kevin W. Hamlen, and Zhiqiang Lin. 2012.
Binary Stirring: Self-randomizing Instruction Addresses of Legacy x86 Binary
Code. In ACM SIGSAC Conference on Computer and Communications Security.

[76] Peter Williams and Radu Sion. 2012. Round-optimal access privacy on outsourced
storage. In ACM Conference on Computer and Communications Security.

[77] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. 2015. Controlled-Channel
Attacks: Deterministic Side Channels for Untrusted Operating Systems. In IEEE
Symposium on Security and Privacy.

[78] Y. Yarom, D. Genkin, and N. Heninger. 2016. CacheBleed: A timing attack on
OpenSSL constant time RSA. Technical Report. Cryptology ePrint Archive. Report
2016/224. https://eprint.iacr.org/2016/224.pdf.

https://software.intel.com/sites/default/files/332680-002.pdf
https://software.intel.com/sites/default/files/332680-002.pdf
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-manual-325462.html
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-manual-325462.html
https://llvm.org
https://arxiv.org/abs/1703.06986
http://pax.grsecurity.net/docs/aslr.txt
http://pax.grsecurity.net/docs/aslr.txt
http://dl.acm.org/citation.cfm?id=2831143.2831171
https://doi.org/10.1145/3106237.3106248
http://arxiv.org/abs/1806.07480
http://arxiv.org/abs/1806.07480
https://www.usenix.org/conference/usenixsecurity18/presentation/van-schaik
https://www.usenix.org/conference/usenixsecurity18/presentation/van-schaik
https://eprint.iacr.org/2016/224.pdf

	Abstract
	1 Introduction
	2 Problem Statement
	3 DR.SGX
	3.1 Requirements and Challenges
	3.2 DR.SGX Design

	4 DR.SGX Implementation
	4.1 Memory Access Instrumentation
	4.2 Random Permutation
	4.3 Initial Randomization
	4.4 Stack Randomization
	4.5 Permutation Buffer
	4.6 Re-Randomization

	5 Performance Evaluation
	6 Security Analysis
	6.1 Finding Attack Position in Trace
	6.2 Inferring Secret Enclave Data

	7 Related Work
	8 Discussion
	9 Conclusion
	References

